20世紀90年代末,加州大學聖迭戈分校的約翰·古德凱德和他的同事在對由氦的同位素氦-3和氦-4構成的晶體進行實驗時,發現了奇怪的東西。
實驗結果令人震驚
生成氦晶體並不容易,你不僅需要把液態氦-4轉換為固體的冷凍溫度,而且還必須將液態氦-4加壓到至少25個標準大氣壓。古德凱德研究小組利用超聲波轟擊固態氦-4晶體。當研究人員將晶體冷卻到接近絕對零度的溫度時,他們注意到超聲波加快速度。這可能與超固體的構成有關。當聲音穿過固體時,會引起原子振動。如果晶體的一部分變成超固體,它將與晶體的剩餘部分分離,使超聲波傳播的速度加快。
受該研究結果的鼓舞,賓夕法尼亞州立大學的摩西·陳和他的學生金永順決定在2001年親自實驗。他們將一些固態氦-4放在一個桶裡,懸掛在繩上,先是讓其以順時針方向旋轉,然後在冷凍過程中,以每秒1000次的速度逆時針旋轉。
該實驗能讓研究人員瞭解,固態氦-4在非常低的溫度下快速振動時出現的狀況。實際上,上述“桶”比縫紉用的頂針還要小,而且是在杆上面旋轉,而不是在繩上。
該實驗最終獲得了成功。當實驗者將晶體的溫度冷卻至2 K以下時,他們開始認真監控小桶的振動速率。這種振動的頻率受杆的硬度和小桶的慣性的控制,而小桶的慣性又由桶內氦的質量決定。在溫度降至約0.2 K時,小桶開始振動得更加快速,其中一些氦似乎有從桶裡溢位來的架勢。
摩西·陳和金永順得出的結論是:固體中約有1%的氦晶體保持靜止,而其餘99%正常轉動。晶體中99%的部分看上去似乎正從保持靜止的1%氦晶體中穿過。結果的確令人非常震驚,但他們必須保證這些現象不是設計裝置缺陷的結果。鑑於此,他們再次用氦-3代替氦-4進行了實驗,因為氦-3的原子是費密子,不應形成超固體。如果他們發現氦-3對結果沒有產生任何影響,他們就會據此確信上次的研究結果是正確的。
理論家提出質疑
研究結果再次與研究人員預測的一樣。但即便如此,陳和金還不能完全確信所看到的現象。他們在把實驗結果刊登在《自然》雜誌上時,起了一個相當模糊的題目:“或許發現超固態氦”。在其他物理學家對該結果表示懷疑時,陳和金又進行了多次實驗。他們把後來的研究結果刊登在《科學》雜誌上,不過這次他們在題目中去掉了“或許”二字。
陳認為,其研究結果最為具有邏輯性的解釋是,1%的原子或空位濃縮成一個單位,這個單位後來受到量子力學規則的影響,而剩餘的99%則繼續生活在非量子物理世界裡。然而,陳的實驗結果還是引發了巨大爭議。與此同時,理論家也對陳的研究結果提出質疑。馬薩諸塞大學理論家尼古拉·普羅科夫及其同事鮑里斯·斯維斯圖諾夫認為,陳所看到的只是無數微小晶體在大量液態氦中滑行的現象,而不是超固體穿過一塊晶體。
伊利諾伊大學理論家戴維·塞普利認為,空位不可能在陳實驗的高壓環境中出現。他表示,不斷升高的壓力將會把空位從晶體中“擠壓”出來。
2003年物理學諾貝爾獎得主託尼·萊格特則認為,超固體行為甚至可能不涉及空位。但陳確信,超固體行為涉及空位和其他型別的晶體缺陷,並把這一問題拋給理論家們,這是有意義的。