(報告出品方/作者:國信證券,熊莉)
1 特斯拉(TESLA):從硬到軟的全棧自研,打造“算 力+演算法+資料”的競爭壁壘
從 Mobileye 到英偉達,最終走向 FSD 自研晶片
特斯拉於 2014年推出自動駕駛輔助系統 Autopilot 1.0,特斯拉掌握核心資料、 AI 演算法以及主控晶片,從硬到軟的全棧自研,這也成為了特斯拉最核心的競爭 壁。特斯拉成立於 2003 年,並於 2010 年在納斯達克上市。2008 年至 2020 年特斯拉共釋出 Model S、Model X、Model 3、Model Y 四款量產車型。特斯拉於 2013 年開始自動駕駛輔助系統的研發,並於 2014年特斯拉推出自動駕駛 輔助系統 Autopilot 1.0,此後經歷四次升級,並在 2019 年在 HW 3.0 平臺上推出了自研的 FSD(Full Self-Driving Computer)主控晶片。
特斯拉從 Mobileye 到英偉達,最終走向 FSD 自研晶片。特斯拉從 2014 年推 出 HW 1.0 開始,特斯拉 Autopilot 系統共經歷了 4 次大的硬體版本更新。在 2014 年-2016 年的 HW 1.0 時代,特斯拉完全基於 1 顆 Mobileye EyeQ3 和 1 顆 NVIDIA Tegra 3,演算法也完全由第三方供應商 Mobileye 提供,2016 年特斯拉 逐漸不滿於 Mobileye 程序緩慢以及相關安全事故,並在 2016 年的 HW 2.0 版本上,特斯拉切換到了由 1 顆 NVIDIA Parker SoC 和 1 顆 NVIDIA Pascal GPU 組成的 NVIDIA DRIVE PX 2 計算平臺,而在 2017 年的 HW 2.5 版本升級過程 中,將 NVIDIA Drive PX 2 升級為 NVIDIA Drive PX 2+,新增了一個 NVIDIA Parker SoC,獲得了 80%左右的運算效能提升。
特斯拉即將釋出 HW 4.0 平臺,基於三星 7nm 工藝的 FSD 自研晶片,其效能將是 HW 3.0 的三倍。由於英偉達的高能耗,2017 年起,馬斯克決定開始自研 主控晶片,尤其是主控晶片中的神經網路演算法和 AI 處理單元全部由特斯拉自主 完成。在 2019 年 4 月份,特斯拉在 Autopilot HW 3.0 平臺上成功推出自研的 FSD 主控晶片,實現了自動駕駛晶片+神經網路演算法的垂直整合。特斯拉計劃 將在不久的未來 HW 4.0 版本,基於三星 7nm 工藝的全新 FSD 自研晶片,其 效能將是 HW 3.0 的三倍。
特斯拉 FSD 晶片是以 NPU(ASIC)為計算核心,採用“CPU+GPU+ASIC” 的技術路線,FSD 主要有三個模組 CPU、GPU 和 NPU。特斯拉於 2019 年推 出自研的 FSD 晶片,並在其 Model S、Model X、Model 3 上批次交付 FSD 芯 片。該晶片採用三星 14nm FinFET 工藝製造,面積為 260 平方毫米,封裝了 大約 60 億個電晶體。(1)CPU:Cortex-A72 架構,共三組、每組 4 個核,一 共有 12 核、最高執行頻率 2.2GHz,CPU 主要處理通用的計算和任務;(2) GPU:最高工作頻率為 1 GHz 的 GPU,最高計算能力為 600 GFLPS;(3) NPU:2 個 Neural Processing Unit(NPU),每個 NPU 可以執行 8 位整數計 算,執行頻率為 2GHz,單個 NPU 算力 36.86 TOPS,2 個 NPU 的總算力為 73.73 TOPS。從面積來看,NPU 面積佔比最大,NPU 主要用於執行深度神經 網路,GPU 主要用於執行深度神經網路的 post processing,處理深度神經網路 的部分合計佔據了晶片 70%的面積。
特斯拉 HW 3.0 採用完整的雙系統冗餘。特斯拉 HW 3.0 的主機板上共搭載了兩 塊的自研晶片,雙晶片的目的是作為安全冗餘,互相對照,每塊晶片可以獨立 運算。每塊晶片周圍有四塊鎂光 DRAM 記憶體,每塊晶片分別配有一塊東芝快閃記憶體 晶片,用於承載作業系統和深度學習模型,主機板的右側是影片輸出介面,左側 是電源介面和其他另外的輸入/輸出介面。此外,特斯拉還設計了冗餘的電源、 重疊的攝像機視野部分、各種向後相容的聯結器和介面。特斯拉 HW 3.0 採用 完整的雙系統冗餘,在任何一個功能區域發生損壞時,整個系統依舊可以正常 工作,確保車輛能安全行駛。HW 3.0 的效能比上一代 HW 2.5 提高了 21 倍, 而功耗降低 25%,能效比 2 TOPS/W。
伴隨自動駕駛功能不斷升級,FSD 軟體收費價格持續攀升
特斯拉 FSD 開通價格不斷攀升,海外已漲價至 1.2 萬美元。特斯拉 FSD 具有 一次性支付和訂閱兩種購買方式。特斯拉自 2015 年開通 AP 系統,價格為 2500 美元/套,後上調至 5000 美元/套;在 2019 年 3 月前,使用者可以在 5000 美元 的 EAP(Enhanced Autopilot)包之外,額外支付 3000 美元獲得 FSD(此時 並不包含任何功能);19 年 4 月,特斯拉取消 EAP,將 EAP 功能移到 FSD 中, FSD 漲價到 6000 美元/套,使用者可免費獲得 Basic Autopilot(BAP)功能;19 年 8 月釋出智慧召喚功能,漲價到 7000 美元/套;20 年 8 月,特斯拉獲得將人 工智慧更高層次應用的批准檔案,再次漲價到 8000 美元/套;20 年 10 月,特 斯拉推出 FSD Beta 版本,配備城市道路完全自動駕駛測試功能,價格上調至 10000 美元/套;2022 年 1 月,特斯拉 FSD 再次漲價至 1.2 萬美元。在國內市 場,特斯拉 FSD 只漲過一次價格,從 5.6 萬漲到 6.4 萬元。在訂閱服務方面, 2021 年 7 月特斯拉推出 FSD 訂閱包,EAP 車主 99 美元/月,未開通 EAP 的 BAP 車主 199 美元/月。
特斯拉 FSD 在全球的整體開通率約為 11%,其中北美地區比例最高。根據 Troyteslike 資料顯示,受到低價的 Model 3 及 Model Y 高速放量,以及 FSD 不斷漲價的影響,特斯拉 FSD 在全球的整體開通率持續下滑,截至 2021Q2 結 束,特斯拉 FSD 的整體開通率約為 11%。預計特斯拉 FSD 在全球的累計開通 數量近 36 萬套(北美超過 26 萬套,歐洲接近 9 萬套,亞太地區僅 5700 套), 平均選裝價格為 6 千美元,其總銷售額超過 210 億美元。特斯拉 FSD 在亞洲 地區銷量持續攀升,但是 FSD 開通率整體偏低。以北美地區為例,Model S/X 的 FSD 選裝率在 61%,Model Y 的選裝率在 20%,Model 3 的選裝率在 20%。
推出 Dojo 超算平臺,打造感知自主進化的閉環學習系統
特斯拉依託龐大客戶群來收集自動駕駛資料,從而實現對深度學習系統的模型 訓練。與一般的汽車廠商和科技公司不同,特斯拉的自動駕駛不是依靠內部測 試獲取自動駕駛的資料,而是透過其龐大的客戶群和裝載感測器的特斯拉車輛 上收集資料,並進行功能升級。即使沒有啟用,AP 系統仍可以收集有關其環境 和潛在自動駕駛行為的資料,以饋送特斯拉的神經網路。該資料收集方法通常 被稱為影子模式(Shadow mode),即 AP 系統在車輛的後臺執行而無法在駕 駛中進行任何輸入。
特斯拉自 2015 年 10 月開始開通 AP 系統,隨著車輛數量的不斷增加,累計的 自動駕駛資料也在呈現指數級增長。根據 Lexfridman 預測資料顯示,到 2020 年 Q1,特斯拉已經擁有近 99 萬臺搭載 AP 系統的車輛不斷回傳資料,其中搭 載 HW 2.0/3.0 的車輛有超過 82 萬臺,以使用者平均每天駕駛約一個小時計算(每 輛車 8 個攝像頭),車隊每月大約會產生 1.968 億個小時的影片。預計到 2020年底,特斯拉將擁有 51 億英里的駕駛資料,用於自動駕駛的模型訓練。
釋出 7nm 工藝 AI 訓練晶片 D1,打造 Dojo 超算訓練平臺。在 2021 年 8 月的 特斯拉 AI Day 上,特斯拉釋出了最新的 AI 訓練晶片 D1,D1 晶片採用臺積電 7nm 工藝製造,核心面積達 645 平方毫米,集成了多達 500 億個電晶體,共有 四個 64 位超標量 CPU 核心,擁有多達 354 個訓練節點,特別用於 8×8 乘法, 支援 FP32、BFP64、CFP8、INT16、INT8 等各種資料指令格式,都是 AI 訓 練相關。D1 晶片的 FP32 單精度浮點計算效能達 22.6 TFlops,BF16/CFP8 計 算效能則可達 362 TFlops。為了支撐 AI 訓練的擴充套件性,D1 晶片的互連頻寬最 高可達 10TB/s,由多達 576 個通道組成,每個通道的頻寬都有 112Gbps,而 熱設計功耗僅為 400W。
Dojo 是一種透過網路連線的分散式計算機架構,它具有高頻寬、低延時等特點, 將會使人工智慧擁有更高速的學習能力,從而使 Autopilot 更加強大。Dojo 超級 平臺的核心是 D1 晶片,25 個 D1 晶片組建成一個“訓練瓦”(Training tile), 組成 36 TB/s 的頻寬和 9 Peta FLOPS(9 千萬億次)算力。未來,Dojo 還可 以組合成為全球最強算力的超級計算機叢集。
特斯拉不斷打造基於資料驅動的演算法閉環迭代系統。特斯拉將把針對自監督學 習技術的研發放到絕對的優先順序(注:這裡的自監督學習就是無監督學習)。 演算法的迭代最佳化離不開基於大資料的訓練,特斯拉依託海量的客戶群獲得優質 的自動駕駛資料,利用 Dojo 超算平臺,實現對影片進行無監督的大規模訓練。當前 Autopilot 正以 2.5D(即 2D 影象+內容標註)方式進行訓練迭代,特斯拉 利用 Dojo 超算平臺升級 Autopilot 的工作方式,使其可以在 4D(3D+時間維度) 環境下執行。(報告來源:未來智庫)
2 英偉達(NVIDIA):打造全棧式工具鏈,持續領先高階自動駕駛
Drive 系列平臺持續迭代,賦能自動駕駛生態
英偉達自 2015 年推出 NVIDIA Drive 系列平臺,賦能自動駕駛生態。英偉達自 2015 年開始推出面向座艙的 DRIVE CX 和麵向駕駛的 DRIVE PX,此後先後推 出 DRIVE PX2、Drive PX Xavier、DRIVE PX Pegasus、DRIVE AGX Orin 等 多個自動駕駛平臺,而在 SoC 晶片方面,從 Parker、Xavier、Orin 到最新發布 的 Atlan。
(1) DRIVE PX:
英偉達在 CES 2015 上推出了基於英偉達 Maxwell GPU 架構的第一代平臺:搭 載 1 顆 Tegra X1 的 DRIVE CX,主要面向數字座艙,以及搭載 2 顆 Tegra X1 的 DRIVE PX,主要面向自動駕駛;
(2) DRIVE PX2:
英偉達在 CES 2016 推出了基於英偉達 Pascal GPU 架構的第二代平臺 DRIVE PX 2,主要由 Tegra X2(Parker)和 Pascal GPU 組成,PX2 有多個版本,主 要可以分為單晶片版的 AutoCruise、雙晶片版的 AutoChauffeur 以及四晶片版 的 Fully Autonomous Driving。特斯拉自 2016 年 HW 2.0 開始搭載英偉達的定 製版 DRIVE PX2 AutoCruise 版本,並在 2017 年的 HW 2.5 上升級為 2 顆 Tegra X2(Parker);
(3) Drive PX Xavier:
英偉達在 CES 2017 上推出了 Xavier AI Car Supercomputer,並在 CES 2018 上重新發布命名為 Drive PX Xavier,搭載一顆 30 TOPS 算力的 Tegra Xavier 晶片。Xavier 平臺是 PX2 的小型化高能效版,算力稍有提升的前提下,面積縮 小為 PX2 的一半,功率僅為 PX2 的 1/8 左右。該平臺目前搭載在小鵬 P5 與 P7 車型上。
(4) DRIVE PX Pegasus:
英偉達在 2017 年 10 月推出了 DRIVE PX Pegasus,Pegasus 定位更注重效能 的提升。Pegasus 共有四顆晶片,2 顆 Tegra Xavier 晶片,2 顆單獨的 Turing 架構的 GPU,每顆 Xavier 集成了一顆 8 核 CPU 和一個英偉達 Volta 架構的 GPU,透過增加 CPU 和 GPU,Pegasus 平臺可以實現 320 TOPS 的算力,功 耗 500 W。
(5) DRIVE AGX Orin:
英偉達在中國 GTC 2019 大會上推出了 DRIVE AGX Orin 平臺,該平臺由 2 顆 Orin SoC 晶片和 2 顆 Ampere 架構的 GPU,最高算力達到 2000 TOPS,功耗 800 W。
憑藉 GPU 的資源稟賦,持續領先自動駕駛
英偉達採用“CPU+GPU+ASIC”的技術路線。英偉達 Xavier 的晶片架構主要 有 4 個模組:CPU、GPU、Deep Learning Accelerator(DLA)和 Programmable Vision Accelerator(PVA)。其中 GPU 作為深度學習應用的首選,面積佔比最 大,CPU 的面積其次,最小的部分是 DLA 與 PVA 是兩個專用 ASIC,DLA 用於推理 ,PVA 用於加速傳統視覺演算法。
單顆 Orin SoC 可實現 254 TOPS 算力,功耗低於 55W,可支援單片或多片協 同方案,實現算力擴充套件。Orin SoC 晶片集成了 Arm Hercules CPU 核心、新一 代架構 Ampere 的 GPU 、全新深度學習加速器(DLA)和計算機視覺加速器 (PVA),可實現每秒 254 TOPS 運算效能,相比上一代 Xavier 系統級晶片運 算效能提升了 7 倍。在運算效能提升巨大的情況下,Orin 的功耗低於 55 W。 Orin 可以覆蓋 10 TOPS 到 254 TOPS 的算力需求、可以為終端使用者提供可升 級的方案支援單片或多片 Orin 協同的解決方案,無限擴充套件算力。
Orin 所整合的 GPU 擁有 2048 個 CUDA Core 和 64 個 Tensor Core。Orin 內 部集成了 Ampere 架構 GPU,該 GPU 擁有 2 個 GPC(Graphics Processing Clusters,圖形處理簇),每個 GPC 包含 4 個 TPC(Texture Processing Clusters, 紋理處理簇),每個 TPC 包含 2 個 SM(Streaming Multiprocesor,流處理器), 每個 SM 下包含包含 128 個 CUDA Core,合計 2048 個 CUDA Core,算力為 4096 GFLOPS。此外,還包括 64 個 Tensor Core(張量核),Tensor Core 是 專為執行張量或矩陣運算而設計的專用執行單元,稀疏 INT8 模型下算力達 131 TOPS,或者密集 INT8 下 54 TOPS。
蔚來 ET7 成為 Orin 系列的首發量產車,NIO Adam 超算平臺搭載四顆 Orin 芯 片,單車算力打造 1016 TOPS。蔚來 NIO Adam 超算平臺,配備四顆 Orin 芯 片,Adam 擁有 48 個 CPU 核心,256 個矩陣運算單元,8096 個浮點運算單元, 共計 680 億個電晶體,總算力高達 1016 TOPS。Adam 平臺集成了安全自主運 行所需的冗餘和多樣性,在 4 顆 Orin SoC 中,前兩顆 Orin SoC 負責處理車輛 感測器每秒產生的高達 8G 的資料量,第三顆 Orin SoC 作為後備,以確保系統 能夠在任何情況下安全執行,第四顆 Orin SoC 可進行本地的模型訓練,進一步 提升車輛自身的學習能力,並基於使用者偏好提供個性化駕駛體驗。蔚來 ET7 將 作為 NVIDIA DRIVE Orin 系列的首發量產車於 2022 年 3 月開始交付,同樣搭 載 NIO Adam 超算平臺的蔚來 ET5 將於 2022 年 9 月開始交付。
英偉達釋出 Atlan SoC 晶片平臺,首次整合 DPU,單顆晶片算力超過 1000 TOPS。在 2021 年 4 月的英偉達春季 GTC 大會,英偉達釋出了下一代自動駕 駛晶片 Atlan SoC 晶片平臺。Atlan 可以和 Orin 和 Xavier 平臺的軟體堆疊相容, Atlan 採用 5nm 製程,單顆算力達到 1000 TOPS,相當於 Orin 的 4 倍。Atlan 平臺採用新型 Arm CPU 核心、新一代的 GPU、最新的 DLA 深度學習加速器、 PVA 計算機視覺加速器、並內建為先進的網路、儲存和安全服務的 BlueField DPU,網路速度可達 400Gbps,這也是 DRIVE 平臺首次整合 DPU。Atlan SoC 將於 2023 年向開發者提供樣品,並於 2025 年大規模量產上車。
當前,英偉達在自動駕駛領域遙遙領先,持續獲得大量自動駕駛客戶,英偉達 的客戶大致可以分為三類:造車新勢力、傳統車企、自動駕駛公司。(1)造車 新勢力:蔚來(ET5、ET7)、小鵬(P5、P7、G9)、理想(X01)、威馬(M7)、 上汽智己、R 汽車、FF 等;(2)傳統車企:賓士、沃爾沃、現代、奧迪、Lotus 等;(3)自動駕駛 Robotruck/Robotaxi 公司:通用 Cruise、亞馬遜 Zoox、 中國的滴滴,沃爾沃商用車、Kodiak、圖森未來、智加科技、AutoX、小馬智 行、文遠知行等。
打造端到端的自動駕駛平臺,創造開放高效的研發生態
英偉達提供包括從晶片、硬體平臺、系統軟體、功能軟體、應用軟體以及模擬 測試平臺和訓練平臺在內的全棧工具鏈。以英偉達 DRIVE AGX 硬體開發平臺 為起點,在 DRIVE Constellation 上驗證軟體演算法。充分驗證後將部署軟體,通 過 DRIVE Hyperion 參考架構進行上路測試。利用 DGX 高效能訓練伺服器進行 深度學習模型訓練,此過程反覆迭代。英偉達提供了從晶片(Xavier/Orin/Atlan)、 DRIVE AGX 硬體平臺、DRIVE OS、Driveworks、DRIVE AV 自動駕駛軟體棧、 DRIVE Hyperion 資料採集和開發驗證套件 、DRIVE Constellation 虛擬模擬平 臺和 DGX 高效能訓練平臺等全棧工具鏈。
(1)應用軟體:DRIVE AV 與 Drive IX 軟體棧
DRIVE AV 軟體棧主要面向自動駕駛域,包括了從規劃、地圖到感知的應用軟 件開發,幫助開發者實現端到端的感知、路徑規劃、地圖構建、決策和控制等 功能的開發;Drive IX 主要面向智慧座艙域,集成了視覺、語音和圖形使用者體 驗,包括視覺化(盲區視覺化、自動駕駛視覺化以及駕駛員監控視覺化等)、 AI 輔助駕駛(DMS、神經網路、攝像頭標定等)以及 AI 助手(語音識別、手 勢識別、面容識別等)。
(2)功能軟體(中介軟體):Driveworks
DriveWorks 是所有自動駕駛汽車軟體開發的基礎,包含了高階自動駕駛開發所 需要的處理模組、工具和框架。DriveWorks 是模組化、開放、易於定製的,方 便開發人員在自己的軟體堆疊中實現深度定製開發。包括 DNN 演算法加速庫、 Calibration 標定工具、Drive Core 核心庫(感測器抽象層、車輛 I/O、影象處理、 點雲處理、DNN 框架等。
(3)系統軟體:DRIVE OS
DRIVE OS 提供了一套參考作業系統和相關軟體棧,專為在基於 AGX 硬體平臺 上的開發與部署,相關的基礎軟體棧包括 RTOS、Hypervisor、英偉達 CUDA 和 TensorRT 等其他元件,這些元件經過最佳化後可直接訪問 AGX 硬體平臺。DRIVE OS SDK 利用所有軟體、庫和工具、技術和 API,為自動駕駛汽車的構 建、除錯、配置和部署應用程式,提供了最佳化的工作流。
(4)硬體平臺:DRIVE AGX 平臺
英偉達 DRIVE AGX 開發工具包提供了開發展所需要的硬體、軟體及示例應用 程式。英偉達的歷代硬體計算平臺 DRIVE PX2、Drive PX Xavier、DRIVE PX Pegasus、DRIVE AGX Orin 等,前文已經詳細介紹。DRIVE AGX 平臺提供開 放的軟體框架,以及與硬體計算平臺相配套的完善的開發工具包;此外,英偉 達應有眾多 Tier 1 及感測器產業合作伙伴,提供攝像頭、毫米波雷達、超聲波 雷達、鐳射雷達等車載感測器。
(5)模擬平臺:DRIVE Constellation 與 DRIVE Sim
DRIVE Constellation 自動駕駛車輛模擬平臺主要完成對各種虛擬場景的渲染、 模擬,產生模擬感測器資料,透過執行 DRIVE Sim 模擬軟體,模擬模擬汽車在 模擬環境中行駛可產生的感測器資料。Constellation 模擬平臺提供可擴充套件、全 面且多樣化的測試環境。藉助開放的模組化架構,DRIVE Sim 模擬軟體可讓客 戶利用自己的模擬模型或生態合作伙伴的自定義車輛、環境、感測器或交通場 景。
(6)訓練平臺:NVIDIA DGX
基於高效能的英偉達 DGX AI 伺服器,客戶可以進行深度網路學習的訓練、推 理和資料分析,同時多臺 DGX 構建超級計算機或者人工智慧叢集,為具有挑 戰性的自動駕駛海量資料進行深度學習網路模型訓練和建圖提供出色的基礎設 施和靈活可擴充套件的 AI 計算效能。
英偉達釋出全新自動駕駛軟硬體開發參考平臺 DRIVE Hyperion 8。在 2021 年 英偉達 GTC 大會上,英偉達釋出了自動駕駛軟硬體開發參考平臺 DRIVE Hyperion 8,允許主機廠客戶訪問和調整其需求,包括核心計算和中介軟體以及 車輛內部 AI 功能等。該計算平臺可用於 2024 年車型,硬體方面,搭載了兩顆 Orin 晶片,每顆算力 254TOPS,支援 12 顆攝像頭、9 個毫米波、12 個超聲波雷達和 1 顆鐳射雷達。提供感測器硬體的供應商包括 Luminar(鐳射雷達)、 Hella(短程毫米波雷達)、 Continental (遠端毫米波雷達)、Sony(攝像頭 元件)、Valeo (攝像頭元件、超聲波雷達)。
3 高通(Qualcomm):智慧座艙一騎絕塵,自動駕駛不斷追趕
打造“數字底盤”,全面佈局智慧汽車四大領域
高通是作為消費電子霸主,持續佈局智慧網聯汽車業務。高通(Qualcomm) 公司成立於 1985,高通自 2002 年開始佈局汽車業務,早期專注於車載網聯解 決方案,高通於 2014 年推出了第一代座艙平臺驍龍 602A,在 2016 年推出第 二代座艙平 820A,在 2019 年推出第三代座艙平臺 8155,並於 2021 年釋出第 四代座艙平臺 8295;在自動駕駛領域,高通於 2019 年釋出了 Ride 自動駕駛平臺。高通目前已擁有 25 家以上的頭部車企客戶,公司業務已經覆蓋全球超過 2 億輛的智慧網聯汽車,高通在智慧汽車領域的版圖不斷擴張。
高通基於車雲、座艙、駕駛及車聯四大平臺打造數字底盤。高通在汽車業務領 域志在打造“數字底盤”,主要由四部分組成:驍龍車雲平臺(Snapdragon Car-to-Cloud)、驍龍座艙平臺(Snapdragon Cockpit Platform、驍龍駕駛平 臺(Snapdragon Ride Platform)、驍龍車聯平臺(Snapdragon Auto connectivity Platform),打造開放、可定製、可升級、智慧互聯的電子底盤,幫助 Tier 1 和 OEM 主機廠提升客戶體驗。
高通汽車業務營收快速增長。FY2021 高通汽車業務營收達到 9.75 億美元,同 比增長 51.40%,高通 19-21 年汽車業務營收分別為 6.40/6.44/9.75 億美元,高 通預計五年後汽車業務營收規模將達到 35 億美元,預計 10 年後汽車業務營收 規模將達到 80 億美元。
智慧座艙一騎絕塵,中高階數字座艙呈壟斷地位
高通在智慧座艙晶片領域一騎絕塵。從高通 2014 年推出第一代座艙晶片 602A 開始,再到第二代 820A 以及第三代 8155 晶片,市場滲透率持續提升,能夠發 現,近期最初的新車型其座艙幾乎都是搭載了高通 8155 晶片。目前,包括奔 馳、奧迪、保時捷、捷豹路虎、本田、吉利、長城、廣汽、比亞迪、領克、小 鵬、理想智造、威馬汽車在內的國內外領先汽車製造商均已推出或宣佈推出搭 載驍龍汽車數字座艙平臺的車型。
高通驍龍 SA8155P 晶片是目前量產車可以選用的效能最強的座艙 SoC 晶片。 高通第三代座艙晶片 SA8155P 平臺是基於臺積電第一代 7nm 工藝打造的 SoC,也是第一款 7nm 工藝打造的車規級數字座艙 SoC,效能上,8155 晶片 是目前量產車可以選用的效能最強的座艙 SoC 晶片,目前全球最大的 25 家車 企已有 20 家採用高通第三代座艙 8155 晶片。8155 平臺屬於多核異構的系統, 效能是原 820 平臺的三倍,該平臺擁有極強的異構計算的能力,包括多核 AI 計算單元、Spectra ISP、Kryo 435 CPU、Hexagon DSP 第六代 Adreno 640 GPU。Hexagon DSP 中增加了向量擴充套件核心(Hexagon Vector eXtensions, HVX)和張量加速器(Hexagon Tensor Accelerator,HTA),這些專用 AI 計 算模組能大幅提高晶片的 AI 算力。
高通釋出第四代智慧座艙 SA8295P 平臺,效能顯著提升。2021 年 7 月,高通釋出了第四代座艙平臺的 SA8295P,採用 5nm 製程,採用第六代八核 Kyro 680 CPU 和 Adreno 660 GPU,支援同步處理儀表盤、座艙屏、AR-HUD、後座顯 示屏、電子後視鏡等多屏場景需求,CPU、GPU 等主要計算單元的計算能力較 8155 提升 50%以上,主線能力有超過 100%的提升。
百度旗下集度汽車成為高通 8295 的首發,量產車型預計在 2023 年交付。2021 年 11 月 29 日,集度、百度和高通三方在上海進行了簽約儀式,集度汽車成為 高通 8295 的首發,集度旗下首款汽車機器人預計將於 2023 年量產交付,此外 高通 8295 晶片已經獲得長城、廣汽、通用等車廠的定點,相關車型預計在 2023 年交付。
中科創達在 CES 2022 釋出基於高通 SA8295 硬體平臺的全新智慧座艙解決方 案。該解決方案充分發揮 SA8295 在算力、圖形、影象處理等方面的突出效能, 打造了包含數字儀表、中控娛樂、副駕娛樂、雙後座娛樂、流媒體後視鏡和抬 頭顯示器的一芯多屏智慧座艙域控。公司基於深厚的車載 OS 技術,創新性地 打通座艙和自駕兩大技術域,更好地支援 360°環視和智慧泊車功能,基於座 艙域的冗餘算力,在實現安全可靠的低速泊車的同時降低了方案成本。
釋出 Ride 平臺,收購 Venoeer,持續補強駕駛域
高通在 CES 2020 大會上釋出了其自動駕駛 Snapdragon Ride 平臺,支援自 動駕駛平臺的開發。高通在 CES 2020 上推出全新自動駕駛平臺高通 Snapdragon Ride,該平臺基於一系列不同的驍龍汽車 SoC 和加速器建立。它採用了可擴充套件且模組化的高效能異構多核 CPU、高能效的 AI 與計算機視覺引 擎,以及業界領先的 GPU。同時,該平臺還包括 Snapdragon Ride 安全系統級 晶片(SoC)、Snapdragon Ride 安全加速器和 Snapdragon Ride 自動駕駛軟 件棧(Autonomous Stack)。平臺能夠根據自動駕駛的每個細分市場的需求進 行匹配,並提供業界領先的散熱效率,主要面向三大細分:(1)L1/L2 級 ADAS, 面向具備 AEB、TSR 和 LKA 等駕駛輔助功能的汽車,提供 30 TOPS 的算力; (2)L2+級 ADAS,面向具備 HWA、自動泊車 APA 以及 TJA 功能的汽車,提 供 60~125 TOPS 的算力;(3)L4/L5 級自動駕駛,面向在城市交通環境中的 自動駕駛乘用車、機器人計程車和機器人物流車,可提供 700 TOPS 算力,功 耗為 130W。
Snapdragon Ride 軟體平臺包括:規劃堆疊、定位堆疊、感知融合堆疊、系統 框架、核心軟體開發工具包(SDK)、作業系統和硬體系統。高通推出的專門 面向自動駕駛的軟體棧,是整合在 Snapdragon Ride 平臺中的模組化可擴充套件解 決方案,旨在幫助汽車製造商和一級供應商加速開發和創新。該軟體棧透過面 向複雜用例而最佳化的軟體和應用,助力汽車製造商為日常駕駛帶來更高的安全 性和舒適性,例如自動導航的類人高速公路駕駛,以及提供感知、定位、感測 器融合和行為規劃等模組化選項。Snapdragon Ride 平臺的軟體框架支援同時 託管客戶特定的軟體棧元件和 Snapdragon Ride 自動駕駛軟體棧元件。
高通收購維寧爾旗下軟體業務 Arriver,全面補強自動駕駛域。維寧爾 (Veoneer)總部位於瑞典斯德哥爾摩,前身是全球最大的安全氣囊和安全帶 生產商奧托立夫(Autoliv)公司電子事業部,2018 年從奧托立夫拆分出來,維寧爾致力於自動駕駛汽車的高階輔助系統(ADAS)和協作式自動駕駛系統(AD) 領域的研發,擁有雷達系統、ADAS 電子控制單元(ECU)、視覺系統、鐳射 雷達系統和熱成像等產品。Veoneer 在 2020 年將 ADAS、協作和自動軟體開發 集中在一個部門並命名為 Arriver。
2020 年 8 月,維寧爾與高通達成合作,並於 2021 年 1 月簽署了合作協議,雙 方合作交付可擴充套件的先進駕駛輔助系統(ADAS)和協作式自動駕駛(AD)解 決方案,採用 Veoneer 下一代感知與駕駛策略軟體棧和高通 Snapdragon Ride ADAS/AD 可擴充套件系統級 SoC 組合與加速器。
2021 年 10 月 4 日,高通與 SSW Partners 達成最終協議,以 45 億美元(約合 290.03 億元人民幣)收購瑞典汽車技術公司 Veoneer(維寧爾),以全現金方 式交易。根據協議,Veoneer 每股價值 37 美元。交易完成後,SSW Partners 將收購 Veoneer 所有流通股本,並將 Arriver 感測器和自動駕駛軟體平臺出售給 高通,保留 Veoneer 的 Tier 1 業務。
整合 Arriver 視覺感知軟體棧,推出 Snapdragon Ride Vision 視覺系統。高 通在 CES 2022 上釋出了 Snapdragon Ride Vision 視覺系統,該系統擁有全新 的開放、可擴充套件、模組化計算機視覺軟體棧,基於 4 納米制程的系統級 SoC 芯 片打造,旨在最佳化前視和環視攝像頭部署,支援先進駕駛輔助系統(ADAS) 和自動駕駛(AD)。該視覺系統集成了專用高效能 Snapdragon Ride SoC 和 Arriver 下一代視覺感知軟體棧,提供多項計算功能以增強對車輛周圍環境的感 知,支援汽車的規劃與執行並助力實現更安全的駕乘體驗。利用 Ride 平臺軟體 開發套件(SDK),汽車製造商和 Tier 1 可以靈活開發其駕駛策略軟體棧並集 成元件,帶來擴充套件靈活性,使其能夠整合地圖眾包、駕駛員監測系統(DMS)、 泊車系統、蜂窩車聯網(C-V2X)技術和定位模組,從而支援更優的定製化和 向上整合。Snapdragon Ride 視覺系統預計將於 2024 年量產上市。
主機廠合作不斷增加,相關量產車型落地在即
自高通在 2020 年初推出 Snapdragon Ride 自動駕駛平臺後,目前已經與通用、 長城、寶馬等多家主機車廠達成合作,將在下一代新車上搭載 Ride 平臺,相關 量產車型落地在即。
(1)通用(GM):
通用將在下一代 Ultra Cruise 駕駛輔助系統搭載高通 Ride 平臺。高通在 CES 2020 上宣佈與通用集團在數字座艙、車載資訊處理和 ADAS 領域開展合作。通 用近期釋出了其駕駛輔助系統 Ultra Cruise 計算平臺,該平臺由兩個 Snapdragon SA8540P SoC 和一個 SA9000P AI 加速器組成,可在 16 核 CPU 上提供關鍵的低延遲控制功能,併為相機、雷達和鐳射雷達處理提供每秒超過 300 Tera 操作的高效能 AI 計算。 SA8540P SoC 採用 5nm 工藝技術設計,可 實現卓越的效能和能效,將為 Ultra Cruise 的感測、感知、規劃、定位、對映 和駕駛員監控提供必要的頻寬。通用汽車計劃將在 2023 年在凱迪拉克旗下全 新純電動 CELESTIQ 首發上市,並配置自主研發的 Ultra Cruise 軟體棧,覆蓋 95%駕駛場景的可放開雙手自動駕駛。
(2)長城汽車:
長城汽車與高通在自動駕駛領域達成合作,相關量產車將在 2022 年量產。2020 年 12 月,長城汽車與高通宣佈雙方在自動駕駛領域達成合作,長城汽車將率先 採用高通 Snapdragon Ride 平臺,打造先進的高算力智慧駕駛系統——長城汽 車咖啡智駕系統,並在 2022 年量產的長城汽車高階車型中採用,長城汽車是 國內首批採用高通 Snapdragon Ride 平臺的整車廠商。2021 年 7 月正式釋出 搭載高通 Snapdragon Ride 平臺的自動駕駛平臺 ICU 3.0,搭載這一平臺的量 產車型將於 2022 年二季度正式交付。
長城旗下毫末知行在 CES 2022 上推出基於高通 Ride 平臺的域控制器。毫末 智行成立於 2019 年 11 月,前身是長城汽車的智慧駕駛部,毫末智行在兩年的 發展過程中,擁有了全棧自研自動駕駛解決方案和資料智慧中心,業務範圍包 括乘用車、無人物流車、智慧硬體。毫末智行在 2021 年底的 10 億元 A 輪融資 中,高通創投參與了本輪投資,毫末知行的投後估值超過 10 億美元。在 CES 2022 大會上,毫末智行聯合高通全球算力最高的可量產自動駕駛計算平臺毫末 智行小魔盒 3.0,其平臺單板算力達 360TOPS,可持續升級到 1440TOPS。這 也是高通 5nm 自動駕駛計算平臺的全球首發量產。SA8540P SoC+SA9000 的 組合,支援接入 6 路千兆乙太網/12 路 800 萬畫素攝像頭/5 路毫米波雷達/3 路 鐳射雷達,可以做 L1/L2 級別的降級控制,也可以滿足當前 L3 以及後續 L4/L5 等全場景自動駕駛功能的實現。
(3)寶馬集團:
高通與寶馬集團在自動駕駛領域達成合作,相關車型將在 2025 年量產。在 2021 年 11 月的高通投資者大會上,高通宣佈與寶馬集團在自動駕駛領域達成合作, 寶馬的下一代車型將採用高通 Snapdragon Ride 自動駕駛平臺,其中包括高通 的中央計算 SoC 等多個核心部件,新款車型將在 2025 年量產。
4 Mobileye:ADAS 賽道的先行者,當前市佔率第一
ADAS 賽道的先行者,EyeQ 系列累計出貨量過億片
Mobileye 自 1999 年便開始專注於 ADAS 賽道。Mobileye 於 1999 年由以色列 希伯來大學的 Amoon Shashua 教授和 Ziv Aviram 創立,靠視覺演算法起家,主 要業務是開發自動駕駛相關的系統和 EyeQ 系列晶片。2007 年,Mobileye 的 EyeQ1 開始在寶馬、通用和沃爾沃等車企量產上車,2008 年釋出了 EyeQ2, 尤其在 2014 年推出 EyeQ3 後一舉成名,同時於 2014 年在美國納斯達克上市, 市值高達 80 億美元。在 2017 年由英特爾以 153 億美元收購,從而私有化退市, 成為英特爾旗下自動駕駛業務部門。英特爾計劃在 2022 年中讓 Mobileye 獨立 在美上市。
Mobileye 在 2021 年 Q3 營業收入同比增長 39%,18-20 年營收復合增速 18%。 2021 年 Mobileye 拿到了 30 多家車企的 41 項新訂單,涉及約 5000 萬輛新車 搭載。根據英特爾財報顯示,Mobileye 在 2021 年 Q3 營業收入 3.26 億美元, 同比增長 39%。Mobileye 的營業收入從 2018 年的 6.98 億美元提升到 2020 年 9.67 億美元,複合增速為 17.7%。
從 2007 年至今,Mobileye EyeQ 系列晶片累計出貨量超過 1 億顆。Mobileye 的 EyeQ1 自 2007 年在寶馬、通用和沃爾沃量產上車以來,截至目前,公司 EyeQ 系列晶片已經完成 1 億顆的出貨。Mobileye EyeQ 系列晶片出貨量也在 持續增加,但是增速逐漸放緩,EyeQ 系列晶片銷量從 2018-2021 年分別為 1240 萬、1750 萬、1930 和 2810 萬顆,同比增長率 43%/41%/10%/46%。
Mobileye 市場佔有率依舊領先,正在逐漸掉隊。在過去 20 年時間裡,Mobileye 以視覺感知技術為基礎,推出了演算法+EyeQ 系列晶片組成的一系列解決方案, 幫助車企實現從 L0 級的碰撞預警,到 L1 級的 AEB 緊急制動、ACC 自適應巡 航,再到 L2 級的 ICC 整合式巡航等各種功能,Mobileye 當前仍然以 36.29% 的市場份額排名第一,包括寶馬、沃爾沃、奧迪、蔚來、長城等一系列國內外 車企,甚至特斯拉都曾搭載過 EyeQ 系列晶片。但是,Mobileye 正在逐漸掉隊, 例如,寶馬在 2016 年與 Mobileye 組建了自動駕駛聯盟,但是在前不久已經與 高通 Ride 達成合作,蔚來、理想等一批車企則選擇了在新一代車型上搭載英偉 達 Orin 晶片。
產品功耗優勢顯著,演算法生態相對封閉
Mobileye EyeQ 系列晶片從 2007 年釋出至今,目前一共有五代產品:
(1) EyeQ1:Mobileye 的 EyeQ 系列晶片最初是和意法半導體公司共同開 發,第一代晶片 EyeQ1 從 2004 年開始研發,於 2007 年上市,算力為 0.0044 TOPS,功耗為 2.5W;
(2) EyeQ2:2008 年釋出,2010 年上市,最初的兩代產品僅提供 L1 輔助 駕駛功能,EyeQ2 算力為 0.026 TOPS,功耗為 2.5W;
(3) EyeQ3:2013 年釋出,2015 年量產上市,基於其自主 ASIC 架構自行 開發,使用了 4 顆 MIPS 核心處理器、4 顆 VMP 晶片,算力為 0.256TOPS,功耗為 2.5W,可以支援 L2 高階輔助駕駛計算需求;
(4) EyeQ4:2015 年釋出,2018 年量產上市,採用 28nm 工藝。EyeQ4 使用了 5 顆核心處理器(4 顆 MIPS i-class 核心和 1 顆 MIPS m-class 核心)、6 顆 VMP 晶片、2 顆 MPC 核心和 2 顆 PMA 核心,可以同時 處理 8 部攝像頭產生的影象資料,EyeQ4 算力為 2.5 TOPS,功耗為 3W;
(5) EyeQ5:2018 年釋出,2021 年量產上市,由臺積電代工,採用 7nmFinFET 工藝,EyeQ5 系統採用了雙路 CPU,使用了 8 顆核心處 理器、18 核視覺處理器,算力為 24 TOPS,功耗為 10W。
EyeQ5 採用“CPU+ASIC”架構,功耗極低,但生態相對封閉。EyeQ5 主要 有 4 個模組:CPU、Computer Vision Processors(CVP), Deep Learning Accelerator(DLA)、Multithreaded Accelerator(MA),其中 CVP 是針對傳 統計算機視覺演算法設計的 ASIC 模組,用專有的 ASIC 來執行這些演算法而達到 極低功耗而聞名。但是其算法系統相對封閉,對 OEM 和 Tier 1 來說是黑盒, 他們無法進行二次修改從而差異化自己的演算法功能。Mobileye 的演算法解決方案 還是以傳統計算機視覺演算法為主,深度學習演算法為輔,這也直接決定了其以 CVP 為主,DLA 為輔的架構。
釋出高算力先進製程晶片,佈局高階自動駕駛
Mobileye 在近年的 CES 2022 大會上釋出了三款最新的晶片 EyeQ Ultra、 EyeQ6 Light 和 EyeQ6 High。此外,Mobileye 與吉利汽車集團的極氪共同宣 布,將在在 2024 年前推出具有 L4 能力的純電新車,新車基於吉利 SEA 平臺 打造,使用 6 顆 EyeQ 5 晶片,以處理 Mobileye 的駕駛策略及地圖技術的開放 協作模型。同時,新車將,雙方將在軟體技術方面進行有效整合。
EyeQ Ultra:面向L4級自動駕駛,基於5nm 製程打造,算力176 TOPS, 大約為 10 顆 EyeQ5 晶片的效能。EyeQ Ultra 具備 12 核、24 執行緒 CPU, 同時還有兩個通用計算加速器和兩個 CNN 加速器。EyeQ Ultra 預計將 在 2023 年提供樣品,2025 年實現量產上車;
EyeQ6 High:面向 L2級自動駕駛,基於7nm 製程打造,算力34 TOPS, EyeQ6 High 具備 8 核、32 執行緒的 CPU,兩個通用計算加速器和兩個 CNN 加速器。EyeQ6 High 預計 2022 年開始提供樣品,2024 年實現 量產;
EyeQ6 Light:面向 L1-L2 級自動駕駛,基於 7nm 製程打造,算力 5 TOPS。EyeQ6 Light 具備 2 核、8 執行緒 CPU,1 個通用計算加速器和 1 個 CNN 加速器。為上一代 EyeQ4 的迭代版本,但封裝尺寸為 EyeQ4 的 55%。預計 2023 年實現量產。
5 華為:以 ICT 技術全面賦能汽車智慧化
堅定“平臺+生態”戰略,佈局五大業務板塊
華為智慧汽車解決方案包括五大業務板塊:智慧網聯、智慧駕駛、智慧座艙、 智慧電動、智慧車雲服務。華為自 2014 年成立車聯網實驗室,便開始面向智 能網聯汽車領域儲備技術,2019 年 5 月份,華為正式成立了智慧汽車解決方案 BU,開始全面進軍智慧汽車賽道。華為提出了代表計算和通訊的 CC 架構,用 分散式網路+域控制器的架構,將車輛分為三大部分:駕駛、座艙和整車控制, 推出了基於 CC 架構的三大平臺智慧駕駛平臺(MDC)、智慧座艙平臺(CDC) 和整車控制平臺(VDC)。華為堅持“平臺+生態”的發展戰略,聚焦 ICT 技 術,圍繞 iDVP、MDC 和 HarmonyOS 智慧座艙三大平臺,構建生態圈,攜手 合作伙伴幫助車企造好車。
打造開放共贏的 iDVP 智慧汽車數字底座,實現軟硬體分層解耦。在智慧汽車 數字架構中,華為提供智慧汽車數字平臺的基礎要素 iDVP,i 是智慧、D 是數 字、V 是汽車、P 是平臺,包括計算與通訊架構 CCA、車載作業系統、多域協 同軟體框架 HAS Core 和完善的整車級工具鏈,構建硬體生態和軟體生態,與 夥伴們聯合定義硬體介面和軟體介面,聯合開發原子化服務,實現軟硬體分層 解耦,幫助車企快速開發跨廠家、跨裝置的應用,為使用者帶來持續進化的體驗。 華為積極參與產業聯盟,建立共識,基於自身實踐,貢獻行業標準。
基於華為 MDC 計算平臺,打造開發共贏的智慧駕駛生態
華為 MDC(Mobile Data Center,移動資料中心)定位為智慧駕駛的計算平臺, 整合華為在 ICT 領域 30 多年的研發與生產製造經驗,為開發者提供全場景覆 蓋的工具鏈與豐富的 SDK,支援夥伴的軟體開發和移植,同時滿足智慧駕駛應 用對車規、安全的核心要求。目前,已經有 70 多家合作伙伴加入了 MDC 生態 圈,聯合推進乘用車、港口、礦卡、園區等智慧駕駛場景的試點與商用。
華為 MDC 平臺遵循平臺化與標準化原則,包括平臺硬體、平臺軟體服務、功 能軟體平臺、配套工具鏈及端雲協同服務,支援元件服務化、介面標準化、開 發工具化;軟硬體解耦,一套軟體架構,不同硬體配置,支援 L2+~L5 的平滑 演進,保護客戶或生態合作伙伴的應用軟體開發的歷史投資。MDC 自動駕駛平 臺的系統架構是可伸縮的,透過對 CPU 核心數,人工智慧加速核心搭載數量以 及 IO 介面數量的增減,可滿足高、中、低端乘用車從駕駛輔助到高階智慧駕駛 的不同使用場景。
華為 MDC 採用 CPU+NPU 路線。以華為 2018 年釋出的 MDC 300F 為例,集 成了華為自研的 Host CPU 晶片、AI 晶片、ISP 晶片與 SSD 控制晶片。CPU 晶片:華為自研的鯤鵬 920 處理器,基於 ARM 架構,採用 7nm 工藝,2.0GHz, 最大功耗 55W;NPU 晶片:華為自研的昇騰 310 處理器,基於達芬奇 AI 架構, 可以提供 16TOPS@INT8 的算力,採用 12nm 工藝,最大功耗 8W。
華為 MDC 平臺將硬體介面標準化,基於 SOA 架構,透過標準組件介面實現不同演算法元件組合及應用。華為 MDC 平臺支援智慧駕駛相關的多種感測器、執 行器、IVI 或 T-Box 等周邊模組的接入,支援豐富、靈活可變的主流硬體標準化 介面,如 GMSL、CAN、CAN-FD、Automotive-Ethernet 等,提供廣泛的相容 性與選擇靈活性。同時,華為 MDC 功能軟體基於 SOA 架構,遵循 AUTOSAR 規範,定義了智慧駕駛基本演算法元件,能夠實現感知演算法元件、融合演算法元件、 定位演算法元件、決策演算法元件、規劃演算法元件、控制演算法元件的呼叫框架與組 件之間的軟體介面。上層場景應用可以靈活選擇不同的演算法元件組合,實現具 體的場景應用功能。
華為 MDC 產品線逐漸完善,陸續釋出 MDC 300F/210/610/810 多款產品,覆 蓋從 L2+~L5 全場景自動駕駛應用。在 2019 年,華為正式推出了 MDC 300F, 算力 64 TOPS,面向商用車場景,華為正式開啟了 MDC 生態建設;2020 年 9 月,在華為智慧汽車解決方案生態論壇上,華為釋出了 MDC 210 與 MDC 610, 前者算力達 48 TOPS,適用於 L2+自動駕駛,後者算力達 200+ TOPS,適用 於 L3/L4 級別自動駕駛;2021 年,在上海車展上,華為釋出了 MDC 810,算 力達到 400+ TOPS;華為計劃在 2022 年釋出 MDC 100,進一步豐富 MDC 產 品線。
華為還提供了一系列的華為 MDC 開發者套件包括 MDC 工具鏈、MDC Core SDK 和車雲協同開放平臺。在華為 MDC 平臺硬體上,執行著智慧駕駛操作系 統 AOS、VOS 及 MDC Core,並配套提供完善的開發工具鏈。基於華為 MDC 平臺的作業系統、平臺軟體與功能軟體中介軟體,均對外提供標準的開放 API 與 SDK 開發包,結合簡單易用的工具鏈,助力客戶或生態合作伙伴研發效率提升, 實現智慧駕駛應用的快速開發、調測、部署與執行。
MDC 工具鏈:包含 AI 運算元開發工具 MindStudio、AP 配置工具 MMC、 整合開發環境 MDS、標定診斷工具 MCD 以及視覺化調測工具 Mviz, 覆蓋智慧駕駛應用的研發、除錯、部署及運營全生命週期。透過 MDC 工具鏈可以實現“1 小時安裝、1 天上手、1 周遷移、1 月上車”的“4 個 1”的開發效率;
MDC Core SDK:包含 MDC Turbo 效能加速包,裡面含主流運算元庫、 典型運算元及網路模型效能最佳化。MDC Core SDK 同時還包含了 MDC 開發服務包,華為方面將中介軟體服務化,包括感測器接入服務、AP 服 務、安全服務以及診斷服務等,以 API 的形式對外開放。華為還會提 供智慧駕駛服務框架 ADSFI,開發參考示例程式碼,以及配套的開發指 南等文件。MDC Core SDK 支援 TensorFlow、Caffe 等主流 AI 框架、 1000 多個運算元,以及包括 AP 在內的 100 多個 API 服務;
車雲協同開放平臺:雲端有極其強大的算力,車雲協同是演算法快速迭代 的必要和有效的手段,華為在雲端提供了資料服務、場景庫服務、訓練 服務、模擬服務等,提升了車端演算法的泛化能力,加速了車端和雲端的 資料閉環。車雲協同開放平臺內有超過 2000 萬標註資料集,超過 20 萬個場景庫,大幅提升演算法訓練與模擬效率。
華為與合作伙伴的合作分為兩種模式:一種是 Huawei Inside 模式,即華為提 供包含智慧駕駛應用軟體、計算平臺以及感測器在內的智慧駕駛全棧解決方案。 另一種是 MDC 平臺模式,華為提供 MDC 智慧駕駛計算平臺,主要包括 SOC 硬體、自動駕駛作業系統、車控作業系統,以及 AutoSAR 中介軟體。 目前,一共有北汽、廣汽、長安、小康賽力斯、長城五家車廠確定搭載華為 MDC 平臺。在 2021 年的廣州車展上,廣汽埃安 LX Plus 和長城沙龍機甲龍都選擇 了 MDC 作為智慧駕駛計算平臺。除此之外,北汽新能源旗下的極狐阿爾法, 小康賽力斯 SF5 和問界 M5、長安阿維塔 11 也都確定搭載華為 MDC 平臺。
打造萬物互聯的 HarmonyOS 智慧座艙生態
華為於 2020 年 8 月 14 日公佈了三大鴻蒙車載 OS 系統——鴻蒙座艙作業系統 HOS、智慧駕駛作業系統 AOS 和智慧車控作業系統 VOS。華為致力於以硬體 模組化、介面標準化、系統平臺化為目標,圍繞 HarmonyOS 車機作業系統構 建智慧座艙生態,目前,華為在 HarmonyOS 作業系統上增量開發了 9 類車載 增強能力、開放 1517 個車載業務 API、13000 多個 HarmonyOS 的 API,並提 供全面開放的工具和技術支援,降低座艙系統的整合與開發難度,幫助夥伴快 速開發和遷移應用,為使用者帶來豐富的人車生活體驗。
基於 HarmonyOS,華為已經與 150 多家軟硬體夥伴們建立合作。聯合定義硬 件介面,做到硬體即插即用、可替換升級、多樣化硬體之間互聯互通,並透過 API 介面開放給應用,快速開發全場景覆蓋、多裝置協同的座艙系統,為消費 者提供個性化、智慧化、多樣化的服務體驗。在華為最新的座艙 demo 上,已 經部署了合作伙伴的車載天幕、電子後視鏡、全息投影、轉向系統和智慧健康 座椅等多款鴻蒙周邊裝置。
華為打造真正智慧化、萬物連線的 HarmonyOS 智慧座艙生態。華為智慧座艙 “一芯多屏”解決方案能夠讓座艙內的液晶儀表、AR-HUD(平視顯示器)、 中央顯示、中央娛樂屏、中控屏、副駕屏等均由同一晶片提供效能支援。華為 圍繞 HarmonyOS 車機作業系統,主要透過三種方式來構建‘應用豐富,體驗 多樣,常用常新’的智慧座艙應用生態:(1)針對車域高頻使用的應用,和夥 伴們一起針對基於 HarmonyOS 車域特效能力進行深度適配,打造 HarmonyOS 精品應用;(2)基於華為 1+8 的全場景生態能力,手機,平板,智慧大屏的 應用可以無縫繼承上車;(3)針對不常用的長尾應用,HarmonyOS 車機操作 系統同時提供手機投屏能力,滿足使用者多樣化的體驗需求。
6 地平線:實現國產車規級 AI 晶片從 0 到 1 的突破
國產車規級 AI 晶片先行者,晶片累計出貨量超 100 萬顆
地平線是目前國內唯一一家車規級 AI 晶片大規模前裝量產的企業。地平線於 2015 年由人工智慧和深度學習科學家餘凱博士創立成立,地平線於 2019 年發 布中國首款車規級 AI 晶片征程 2 後,並於 2020 年實現前裝量產,目前地平線 共有三代產品征程 2(2019 年釋出)、征程 3(2020 年釋出)和征程 5(2021 年)。地平線還會推出效能更強的征程 6,採用 7nm 工藝,算力超過 400 TOPS。 目前,征程 5 已獲車型定點,量產時間 2022 年下半年,征程 6 預計工程樣片 的推出時間是 2023 年,量產時間是 2024 年。
地平線擁有眾多汽車產業鏈相關的股東,有助於公司獲得更多主機廠客戶。地 平線在 2021 年 7 月完成了 15 億美元 C7 輪融資,投後估值高達 50 億美元。 在過往的融資中,上汽、廣汽、比亞迪、東風、長城等主機廠參與了地平線的 融資,在汽車產業鏈相關公司還包括寧德時代、韋爾股份、舜宇光學、京東方、 星宇股份等。
地平線征程系列晶片累計出貨突破 100 萬顆,主機廠客戶不斷突破。截至 2021 年 1 月,地平線征程系列晶片出貨量已突破 100 萬顆,已拿下了超過 40 個前 裝量產專案。自 2020 年 3 月首款征程 2 晶片的長安 UNI-T 車型上市以來,地 平線已同長安、上汽、廣汽、一汽、理想、奇瑞、長城,以及奧迪、大陸集團、 佛吉亞等國內外知名主機廠及 Tier1 深度合作。
自研 AI 加速器 BPU,發揮極致的算力效能
地平線採用“CPU+ASIC”技術路線,自研 AI 加速器 BPU(ASIC)。以地平 線征程 2 晶片為例,採用地平線自研的伯努利 1.0 架構的 BPU(ASIC 晶片), CPU 採用雙核 ARM Cortex-A53,征程 2 的等效算力超過 4 TOPS,功耗僅為 2W,達到車規級 AEC-Q100 標準,典型演算法模型在征程 2 晶片的利用率可高 於 90%。
地平線自主設計研發的人工智慧專用計算架構 BPU 已經推出了五種三代 AI 架 構。地平線自主設計研發了人工智慧專用計算架構 Brain Processing Unit (BPU),目前已經推出了五種三代 AI 架構:高斯架構、伯努利 1.0 架構(用 於徵程 2 晶片)、伯努利 2.0 架構(用於征程 3 晶片)、貝葉斯架構(用於徵 程 5 晶片),而在下一代征程 6 晶片將整合第四代 BPU 架構(納什架構)。
軟硬結合,打造“演算法+晶片+工具鏈”的自動駕駛生態
地平線以“演算法+晶片+工具鏈”為基礎,打造“天工開物”AI 開發平臺。地平 線基於地平線自研 AI 晶片打造的“開工開物”AI 全生命週期開發平臺:包含 模型倉庫(Model Zoo)、AI 晶片工具鏈(AI Toolchain)、AI 應用開發中間件 (AI Express)三大功能模組。開發者配合地平線 AI 工具鏈,適配主流的訓練 框架 Caffe、MXNet、TensorFlow 和 PyTorch,支援 ONNX ,並提供模型倉庫 , 加速客戶開發和部署自有演算法,提高客戶產品應用開發效率。
模型倉庫(Model Zoo):產品級演算法、基礎演算法和產品參考演算法三類算 法資源。賦能地平線晶片合作伙伴更快、更省地開發出自己的人工智慧產 品;
AI 晶片工具鏈(AI Toolchain):量化訓練工具和浮點定點轉換工具,為 地平線晶片開發者提供模型訓練、模型轉換、應用開發和部署等基礎工具;
AI 應用開發中間件(AI Express):XStream 和 XProto 兩套應用開發框 架,提供豐富的、高度可複用的演算法模組、業務策略模組、應用元件和場 景應用參考方案,旨在加速客戶從業務模型整合到應用程式開發流程。
地平線打造了最新的自動駕駛參考平臺 Matrix 5,算力高達 512 TOPS。地平 線於 2020年推出了基於 4顆征程 2晶片的 Matrix 2計算平臺,最高算力可達 16 TOPS。地平線於 2021 年推出其最新的自動駕駛參考平臺 Matrix 5,該計算平 臺基於 4 顆征程 5,算力高達 512 TOPS,能夠滿足 ADAS、高階自動駕駛、 智慧座艙等多場景需求並且擁有豐富的介面,包括 48GMSL2 攝像頭輸入通路, 最高可支援多路 8MP@30fps、多路毫米波雷達、4D 成像雷達、鐳射雷達、超 聲波及麥克風陣列的接入,使車內外能夠實現全方位、多模態感知。
7 重點公司分析
中科創達:全球領先的智慧平臺技術服務提供商
中科創達自 13 年開始進入智慧網聯汽車業務,目前已成為全球知名的智慧網 聯汽車平臺產品提供商,在全球擁有超過 200 家智慧網聯汽車客戶。公司能夠 提供從作業系統開發、核心技術授權到應用定製、自動化測試等一站式、全產 品生命週期的解決方案、廣泛應用於智慧座艙、智慧駕駛、基於車雲一體的 SOA 的整車智慧作業系統,已經形成了橫跨智慧座艙、智慧駕駛、智慧互動、智慧 網聯和模擬測試等產品矩陣。
公司在智慧網聯汽車業務上的佈局可以定義為“兩縱一橫”,兩縱分別是智慧 座艙域與自動駕駛域,一橫則代表了底層的作業系統。隨著智慧座艙在智慧網 聯汽車上率先落地,滲透率不斷提升,公司自 13 年進入汽車業務以來,也圍繞 著智慧座艙不斷更新和迭代其解決方案。隨著自動駕駛技術的逐漸成熟,低速 領域如自動泊車技術 APA 即將率先落地,公司也於 21 年 2 月完成對自動泊車 演算法公司輔易航的收購,持續佈局低速自動駕駛域,而在高速領域,目前技術 尚未成熟,行業標準尚未明確,公司持續與高通合作,為客戶提供高質量的解 決方案。在此之外,公司還不斷實現底層軟體平臺化,打造了車雲一體、跨域、 跨 OS 的 SOA 智慧軟體平臺,為智慧座艙域與自動駕駛域打造高效能的操作系 統 OS。
德賽西威:汽車電子 Tier 1 龍頭,ADAS 先發優勢顯著
德賽西威出身德系背景,佈局智慧座艙、智慧駕駛和網聯服務三大業務。公司 創立於 1986 年,原為中德合資企業,後成為純中資企業,公司歷史悠久,客 戶群體覆蓋主流歐美系車廠、日系車廠和國內自主品牌車廠。目前公司主要深 耕智慧座艙、智慧駕駛和網聯服務三大業務板塊。智慧座艙為公司核心主營業務,營收佔比超過八成,主要提供座艙域控制器、車載資訊娛樂系統、駕駛資訊顯示系統、車載空調控制器、新興業務顯示模組及系統、液晶儀表等相關產品;在智慧駕駛領域,公司主要提供從智慧駕駛域控制器、感測器、全自動泊車系統、360 高畫質環視系統、DMS 等產品,21 年 H1 營收佔比 14%。
以域控制器作為切入點,在 ADAS 領域先發優勢。公司目前在自動駕駛域控制 器已經推出四款產品,其中,IPU01 面向 L1 級別、IPU02 面向 L2 級別,兩款 產品主打高性價比,IPU03 和 IPU04 面向高階自動駕駛,主要高效能。IPU01 適配低速環視、泊車相關功能,算力較低;IPU02 搭載德州儀器晶片 TDA4, 滿足代客泊車、高速巡航等功能,已經量產出貨給吉利、上汽、長城、廣汽、 通用及造車新勢力等多家客戶;IPU03 基於英偉達 Xavier 晶片,具有 30 TOP 算力,可以實現高速場景下上下匝道、自主變道,低速場景下 APA、 AVP 以 及城市道路的塞車自動跟車等功能,自 2020 年開始給小鵬 P7 批次供貨,這也 是英偉達 Xavier域控制器的全球首次量產;IPU04 是基於英偉達 Orin 系列晶片,最高算力可拓展到 2000 TOPS,實現高階自動駕駛功能全覆蓋,已在多個 國內頭部主機廠完成定點,預計在 22 年量產。
光庭資訊:領先的智慧汽車軟體解決方案提供商
光庭的業務從車載導航系統 逐漸拓展至車載資訊娛樂系統、液晶儀表顯示系統、 車載通訊系統、高階駕駛 輔助系統、底盤電控系統、電驅動系統等領域,具備了面向智慧網聯汽車的全 域全棧軟體開發能力。公司知名客戶包括日本電產、延鋒偉世通、佛吉亞歌樂、 電裝、馬瑞利、安波福、麥格納等全球知名汽車零部件供應商,公司與上汽集 團、佛吉亞歌樂、電裝、日本電產形成投資或戰略合作關係。公司其他的主要 客戶包括日產汽車、雷諾三星、長安汽車、 MSE、日立、華為等。
公司主要佈局智慧座艙、智慧電控、智慧駕駛、測試工具、地圖服務五大領域, 智慧座艙為公司當前第一大業務板塊。公司憑藉高品質的軟體工程技術服務和 規模化的快速交付能力,主要佈局智慧座艙、智慧電控、智慧駕駛、智慧網聯 汽車測試、移動地圖資料服務五大領域。其中,智慧座艙為公司第一大業務, 18 年-21 年 H1 營收佔比 39.31%、37.96%、33.83%和 39.15%,主要提供 UX 設計和 HMI 軟體開發服務、圖形化儀表解決方案、資訊娛樂系統軟硬分離解決 方案、虛擬化座艙整體解決方案及 T-BOX 軟體解決方案等。
東軟集團:智慧汽車浪潮為老牌軟體龍頭注入活力
智慧汽車互聯業務成為公司主要增長動力。東軟集團於 1991 年成立,於 1996 年上市,是中國第一家上市的軟體企業,主要業務涉及醫療健康及社會保障、 智慧汽車互聯、智慧城市、企業互聯等領域。東軟大汽車業務按照軟體定義汽 車的發展趨勢緊密佈局,形成了以汽車電子解決方案事業本部、先行產品事業 部、網路安全事業部、東軟睿馳組成的大汽車板塊。為客戶提供從硬體、基礎 軟體、應用軟體到車雲一體平臺的解決方案。在硬體層,東軟與國內外主流芯 片平臺聯合打造智慧座艙、智慧駕駛、通用域控制器、智慧通訊等高效能硬體 平臺;在軟體層,東軟以汽車基礎軟體平臺 NeuSAR 為核心,基於 SOA 開發 設計理念,打造覆蓋全棧、全域的整車級軟體產品與解決方案,在應用雲端, 透過車雲一體平臺,由場景引擎驅動,保持整車產品力持續“線上”。東軟擁 有國內外汽車相關智慧財產權 900 餘件,參與了 50 多項相關行業標準的參編或 制定,為全球超過 40 家車廠提供服務,涵蓋 200 餘款量產車型,服務於全球 Top30 汽車品牌中的 85%。
子公司東軟睿馳已經成為軟體定義汽車浪潮下重要的生態賦能者。東軟集團於 2015 年投資成立東軟睿馳,東軟睿馳以軟體技術為核心,致力於提供下一代汽 車平臺與關鍵技術,在汽車基礎軟體 NeuSAR、輔助駕駛和自動駕駛、車雲一 體軟體及服務、新能源汽車動力系統的控制器及軟體、能量及熱管理系統、共 享出行服務平臺等領域,為整車企業提供產品、技術及整體解決方案。東軟睿 馳在 2021 年開啟首輪融資,共計融資 6.5 億元人民幣,其中,國投招商出資 6 億元,德載厚出資 0.5 億元,投後估值為 64 億元人民幣。東軟睿馳 2021 年 H1 營業收入為 3.14 億元,同比增長 371%。
(本文僅供參考,不代表我們的任何投資建議。如需使用相關資訊,請參閱報告原文。)
精選報告來源:【未來智庫】。未來智庫 - 官方網站