本文為作者授權醫脈通釋出,未經授權請勿轉載。
急性髓系白血病(AML)是造血幹細胞惡性克隆性疾病。在AML的診斷、治療以及判斷預後的過程中,基因異常是一項重要指標。隨著基因檢測技術的不斷進步,越來越多與AML發生相關的基因被人們發現,並且這些基因在指導預後方面有重要意義。因此本文參照2017年歐洲白血病網(ELN)根據核型及基因異常建立的AML危險度分層體系,重點介紹對有明確證據與AML預後相關的基因及其與預後的關係。在上期文章中,我們對AML 7種基因突變與預後的關係進行了介紹[詳情請戳:急性髓系白血病幾種基因突變與預後的關係(上)],今天,我們一起來看看另外6種AML基因突變與預後的關係吧!
8BCR-ABL1
BCR-ABL1陽性(即費城染色體陽性)的AML是一種非常罕見的型別,發生率不足1%[19]。該種類型的AML通常預後不良,2017年ELN指南將其列入高危險度組。其與其他型別的AML治療方案也有很大不同,通常需要早期應用TKI,有研究顯示,早期接受異基因造血幹細胞移植能改善預後,經過造血幹細胞移植後,患者5年生存率能夠達到53.8%,5年複發率為37%,DFS率為44.2%[20]。
9GATA2, MECOM
GATA2, MECOM由inv(3)(q21q26.2)/t(3;3)(q21;q26.2)產生,在AML中的發生率約為1-2%[21]。其導致AML的機制與幹細胞調節因子生態病毒整合位點1(EVI1)基因附近的GATA2增強子重定位導致該基因的過表達相關[22]。
GATA2, MECOM基因陽性的AML其OS率極低,預後不良。國外的研究顯示該類AML患者5年生存率極低(OS:5.7%±3%;EFS:0%;RFS:4.3%±4%)[23]。另有研究表明,即使經過造血幹細胞移植,該類患者的1年和4年的OS率也僅為41%和13%[21]。
10RUNX1
RUNX1(Runt 相關轉錄因子1)基因位於21q22染色體,有研究顯示該基因突變在AML中發生率約為13%[24]。
RUNX1負責編碼CBF(核心結合因子)中的ɑ亞基,而CBF在造血過程中發揮重要作用,因此RUNX1基因突變會導致AML的發生。
在AML中,涉及RUNX1的染色體易位包括t(8;21)(q22;q22); RUNX1-RUNX1T1;t(3;21)(q26.2;q22);以及EVI1-RUNX1。其中RUNX1-RUNX1T1融合基因陽性的AML通常預後較好。2017年ELN特別指出如果RUNX1基因突變合併預後良好組的基因突變,則不應劃分至預後不良組。
有研究顯示RUNX1突變患者較非RUNX1突變患者的預後更差,生存率更低。RUNX1突變AML患者的4年估計生存率如下:EFS率為8%,RFS率為26%,OS率為32%。而在正常核型急性髓系白血病(CN-AML)患者中,RUNX1突變相較非RUNX1突變者EFS較差,但RFS和OS沒有發現差異,預計4年EFS率為10%[24]。其他相關研究也支援這種觀點[25]。
11ASXL1
ASXL1(附加性梳樣1)基因位於染色體20q11,ASXL1基因突變在AML中發生率較高,約為5%-11%[26]。
研究表明野生型ASXL1在維持正常造血功能中起重要作用。ASXL1缺失導致祖細胞分化受阻,並會導致髓系惡性腫瘤的發展。大多數ASXL1突變是位於最後一個外顯子5‘端附近的雜合子移碼或無義突變,這種突變一般被認為是功能缺失性突變,然而,也有研究表明ASXL1突變產生的c端截斷的ASXL1蛋白能夠誘導髓系轉化,導致AML的發生[27]。
ASXL1突變常與預後不良相關。而2017年ELN指南特別指出如果ASXL1基因突變合併預後良好組的基因突變,則不應劃分至預後不良組。與野生型ASXL1患者相比,ASXL1突變患者的CR率、EFS率和OS率較低。有研究顯示在中度和不良風險AML組中,ASXL1突變患者的OS和DFS比ASXL1野生型患者更短(3年OS率:47.5% vs 60.8%;3年DFS率:28.5% vs 48.9%)。在CN-AML中,ASXL1突變患者和ASXL1野生型患者之間的OS率(47.4% vs 65.2%)和DFS率(21.0% vs 52.1%)均存在差異[28]。
12TP53
TP53基因位於17號染色體,雖然TP53基因突變在實體腫瘤中發生率較高,然而在AML中其發生率並不高,約為12.7%[29]。
在AML中,TP53基因突變會影響p53蛋白質的結構、摺疊和穩定性,影響其DNA結合能力和生理活性。其中某些TP53突變可能對剩餘的野生型等位基因產生功能喪失(LOF)和顯性負效應,而其他突變會導致功能表型的獲得,導致腫瘤的形成。
在AML中,TP53基因突變通常與預後不良相關,有研究顯示TP53基因突變的AML中位OS時間僅有9個月[30]。其他研究也顯示,TP53改變與較低的生存率相關。TP53改變和TP53未改變患者的3年估計生存率分別為:EFS率:1% vs 13%;RFS率:7% vs 30%;OS率:3% vs 28%[31]。
13FLT3-ITD
FLT3(FMS樣酪氨酸激酶3基因)屬於第Ⅲ類酪氨酸激酶受體家族成員,位於13q12染色體,編碼膜結合蛋白。當配體與FLT3受體在胞外結構域結合後,FLT3二聚體化,從而介導一系列細胞內訊號傳導,調節細胞分化、增殖和凋亡。FLT3基因突變是AML中常見突變,包括近膜區的內部串聯重複(internal tandem duplication,ITD)。在AML中FLT3-ITD發生率為約為27%[32]。
FLT3-ITD突變陽性的AML患者具有易復發、生存期短的特點。有研究顯示,根據單因素分析,在比較5年OS率、DFS率、EFS率及緩解率時,FLT3-ITD突變陽性的AML患者較FLT3-ITD突變陰性者較差。國內也有研究顯示,FLT3-ITD突變數量不影響患者預後。FLT3-ITD突變重排鹼基長度亦對患者預後無明顯影響。FLT3-ITD突變比例<10%患者的OS和完全緩解持續時間(CRD)與同期C-KIT突變的中危組AML患者相似,均顯著長於突變比例≥10%患者。表明FLT3-ITD突變陽性的AML(除外M3)患者中,FLT3-ITD突變比例<10%的患者預後好於突變比例≥10%的患者[33]。
總結
綜上所述,基因改變與AML預後密切相關,如RUNX1-RUNX1T1融合基因、CBFB-MYH11融合基因、NPM1突變且FLT3突變陰性、CEBPA雙突變預後良好;FLT3-ITD突變、ASXL1基因突變、RUNX1基因突變、DEK-NUP214融合基因、GATA2, MECOM預後較差;MLLT3-KMT2A融合基因以及NPM1基因突變合併FLT3-ITD高表達者介於中間。隨著檢測技術的進步,相信在將來還會有更多與AML發生的相關的基因會被發現,評估這些基因對預後的影響對指導AML的治療仍有重要意義。
參考文獻:
[1]OPATZ S, BAMOPOULOS S A, METZELER K H, et al. 2020. The clinical mutatome of core binding factor leukemia. Leukemia [J], 34: 1553-1562.
[2]GAIDZIK V I, BULLINGER L, SCHLENK R F, et al. 2011. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol [J], 29: 1364-1372.
[3]E M Heath,S M Chan,M D Minden,T Murphy,L I Shlush,A D Schimmer. Biological and clinical consequences of NPM1 mutations in AML[J]. Leukemia,2017,31(20):
[4]DUPLOYEZ N, WILLEKENS C, MARCEAU-RENAUT A, et al. 2015. Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors. Expert Rev Hematol [J], 8: 43-56.
[5]DOHNER H, ESTEY E, GRIMWADE D, et al. 2017. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood [J], 129: 424-447.
[6]張夢娜,楊豔麗,耿英華,李駿,馮會欣.CEBPA基因突變與急性髓系白血病臨床特點及預後關係[J].臨床血液學雜誌,2021,34(09):659-663.
[7] Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-2405.[J]. Blood,2016,128(3):
[8] Diagnostic Tool for the Identification of MLL Rearrangements Including Unknown Partner Genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(2):
[9]C Meyer,E Kowarz,J Hofmann,A Renneville,J Zuna,J Trka,R Ben Abdelali,E Macintyre,E De Braekeleer,M De Braekeleer,E Delabesse,M P de Oliveira,H Cavé, et al New insights to the MLL recombinome of acute leukemias[J]. Leukemia,2009,23(8):
[10]De Braekeleer Marc,Morel Frédéric,Le Bris Marie-Josée,Herry Angèle,Douet-Guilbert Nathalie. The MLL gene and translocations involving chromosomal band 11q23 in acute leukemia.[J]. Anticancer research,2005,25(3B):
[11]Schoch Claudia,Schnittger Susanne,Klaus Mirjam,Kern Wolfgang,Hiddemann Wolfgang,Haferlach Torsten. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases[J]. Blood,2003,102(7):
[12]HEATH E M, CHAN S M, MINDEN M D, et al. 2017. Biological and clinical consequences of NPM1 mutations in AML. Leukemia [J], 31: 798-807.
[13]CHANDRA P, LUTHRA R, ZUO Z, et al. 2010. Acute myeloid leukemia with t(9;11)(p21-22;q23): common properties of dysregulated ras pathway signaling and genomic progression characterize de novo and therapy-related cases. Am J Clin Pathol [J], 133: 686-693.
[14]Carl Sanden, Malin Ageberg, Jessica Petersson, Andreas Lennartsson, Urban Gullberg. FORCED EXPRESSION OF THE DEK-NUP214 FUSION PROTEIN PROMOTES PROLIFERATION DEPENDENT ON UPREGULATION OF MTOR[J]. Inventi Impact Cancer,2014,2014:
[15]Díaz-Beyá Marina,Labopin Myriam,Maertens Johan,Alijurf Mahmoud,Passweg Jakob,Dietrich Beelen,Schouten Harry,Socié Gerard,Schaap Nicolaas,Schwerdtfeger Rainer,Volin Liisa,Michallet Mauricette,Polge Emmanuelle,Sierra Jorge,Mohty Mohamad,Esteve Jordi,Nagler Arnon. Allogeneic stem cell transplantation in AML with t(6;9)(p23;q34);DEK-NUP214 shows a favourable outcome when performed in first complete remission.[J]. British journal of haematology,2020,189(5):
[16]BILL M, MROZEK K, KOHLSCHMIDT J, et al. 2020. Mutational landscape and clinical outcome of patients with de novo acute myeloid leukemia and rearrangements involving 11q23/KMT2A. Proc Natl Acad Sci U S A [J], 117: 26340-26346.
[17]Y Chen,H Kantarjian,S Pierce,S Faderl,S O'Brien,W Qiao,L Abruzzo,M de Lima,P Kebriaei,E Jabbour,N Daver,T Kadia,Z Estrov,G Garcia-Manero,J Cortes,F Ravandi. Prognostic significance of 11q23 aberrations in adult acute myeloid leukemia and the role of allogeneic stem cell transplantation[J]. Leukemia,2013,27(4):
[18]ASADA S, FUJINO T, GOYAMA S, et al. 2019. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci [J], 76: 2511-2523.
[19]Arber Daniel A.,Orazi Attilio,Hasserjian Robert,Thiele Jürgen,Borowitz Michael J.,Le Beau Michelle M.,Bloomfield Clara D.,Cazzola Mario,Vardiman James W.. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood,2016,127(20):
[20]LAZAREVIC V L, LABOPIN M, DEPEI W, et al. 2018. Relatively favorable outcome after allogeneic stem cell transplantation for BCR-ABL1-positive AML: A survey from the acute leukemia working party of the European Society for blood and marrow transplantation (EBMT). Am J Hematol [J], 93: 31-39.
[21]Marta Sitges,Blanca Boluda,Ana Garrido,Mireia Morgades,Isabel et al. Acute myeloid leukemia with inv(3)(q21.3q26.2)/t(3;3)(q21.3;q26.2): Study of 61 patients treated with intensive protocols[J]. European Journal of Haematology,2020,105(2):
[22]Hiromi Yamazaki,Mikiko Suzuki,Akihito Otsuki,Ritsuko Shimizu,Emery H. Bresnick,James Douglas Engel,Masayuki Yamamoto. A Remote GATA2 Hematopoietic Enhancer Drives Leukemogenesis in inv(3)(q21;q26) by Activating EVI1 Expression[J]. Cancer Cell,2014,25(4):
[23]Lugthart Sanne,Gröschel Stefan,Beverloo H Berna,Kayser Sabine, et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia.[J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology,2010,28(24):
[24]Tang Jih Luh,Hou Hsin An,Chen Chien Yuan,Liu Chieh Yu et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations[J]. Blood,2009,114(26):
[25]Gaidzik Verena I,Bullinger Lars,Schlenk Richard F, et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group.[J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology,2011,29(10):
[26]Chou Wen Chien,Huang Huai Hsuan,Hou Hsin An,Chen Chien Yuan,Tang Jih Luh,Yao Ming,Tsay Woei,Ko Bor Sheng,Wu Shang Ju,Huang Shang Yi,Hsu Szu Chun,Chen Yao Chang,Huang Yen Ning,Chang Yi Chang,Lee Fen Yu,Liu Min Chih,Liu Chia Wen,Tseng Mei Hsuan,Tien Hwei Fang. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations[J]. Blood,2010,116(20):
[27]Shuhei Asada,Takeshi Fujino,Susumu Goyama,Toshio Kitamura. The role of ASXL1 in hematopoiesis and myeloid malignancies[J]. Cellular and Molecular Life Sciences,2019,76(13):
[28]Lin Yun,Wang Yaping,Zheng Yi,Wang Zechuan,Wang Yanni,Wang Shaoyuan. Clinical characteristics and prognostic study of adult acute myeloid leukemia patients with ASXL1 mutations.[J]. Hematology (Amsterdam, Netherlands),2020,25(1):
[29]Magali Olivier,Monica Hollstein,Pierre Hainaut. TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use[J]. Cold Spring Harbor Laboratory Press,2010,2(1):
[30]Rücker Frank G.,Schlenk Richard F.,Bullinger Lars,Kayser Sabine,Teleanu Veronica,Kett Helena,Habdank Marianne,Kugler Carla Maria,Holzmann Karlheinz,Gaidzik Verena I.,Paschka Peter,Held Gerhard,von Lilienfeld Toal Marie,Lübbert Michael,Fröhling Stefan,Zenz Thorsten,Krauter Jürgen,Schlegelberger Brigitte,Döhner Hartmut. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome[J]. Blood,2012,119(9):
[31]A Stengel,W Kern,T Haferlach,M Meggendorfer,A Fasan,C Haferlach. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases[J]. Leukemia,2017,31(3):
[32]Kottaridis P D,Gale R E,Frew M E,Harrison G,Langabeer S E,Belton A A,Walker H,Wheatley K,Bowen D T,Burnett A K,Goldstone A H,Linch D C. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials.[J]. Blood,2001,98(6):
[33]丁莎莎,沈宏傑,陳子興,陳蘇寧,岑建農,丁子軒,何軍.FLT3-ITD突變數量、長度及水平對急性髓系白血病患者預後的影響[J].中華血液學雜誌,2015,36(06):449-454.
- 教授、主任醫師、博士生導師
- 中山大學附屬第三醫院血液內科主任
- 歐洲腫瘤協會抗癌分會會員
- 中國免疫協會會員
- 廣東省醫療行業協會常委
- 廣東省血液學會會員等
- 主研方向:白血病細胞凋亡訊號轉導機制、造血幹細胞移植、血液腫瘤的分子靶向治療、基因治療及新型抗腫瘤藥物的機制研究等。
- 醫療專長:從事內科血液學臨床醫療工作20多年。多年來從事白血病細胞凋亡訊號轉導機制及血液腫瘤的分子靶向治療研究。對各種貧血、出血性疾病及血液腫瘤有熟練的診治能力。診療疾病包括血液病造血幹細胞移植、白血病化療、惡性淋巴瘤和多發性骨髓瘤等惡性血液疾病的個體化治療方案選擇、各種原因不明的貧血、不明原因的長期發熱以及淋巴結腫大的鑑別診斷和治療等。