sponsored links

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

編輯:好睏 小鹹魚

【新智元導讀】最近機器人很火,從能遛彎的狗到能騎的馬,甚至還有能縫葡萄皮的機械臂!如果我說,能讓機器人自己學會各種「騷操作」,你信麼?

自制一個能給葡萄縫針的機械臂?

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

近日,知名「硬核」up主稚暉君展示了一款自己從零到一設計的小型高精度六軸機械臂Dummy。

影片一出,直接衝到B站排行榜前十,開啟彈幕,滿屏都是驚歎號。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

在「瑟瑟發抖」、「儲存=會做」、「他竟然在試圖教會我們」、「我看不懂,但大受震撼」的彈幕之中,有網友說「希望我們也能儘早做出中國版的『達芬奇』機器人」。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

不止華為,其實各大科技公司都在發力機器人的技術研究。就在最近舉辦的國際智慧機器人與系統大會IROS 2021上,我們就看到了很多熟悉的身影,其中不乏堪比穿針引線的靈活操作技術。

而這其中,有一個你肯定意想不到的名字!

沒條胳膊也算機器人?

雖然現在服務型機器人遍地開花,不過大多隻能問個「您好,請問有什麼能幫您」,然後回答一個「暫不支援該功能」,連送個外賣都得人追著外賣跑。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

為什麼這些機器人難以派上用場?

嗯。。。可能得先需要一個可以靈活抓取的機械臂。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

此處先放一個彩蛋

抓取是機械臂的基本功,要想成功完成抓取任務,需要闖過三個關卡:抓取物體時定位要精準,抓取姿態要合適,對物體間遮擋可能造成的碰撞要先知先覺,闖過了這三關,機器人才算是入了門。

這篇位元組跳動AI Lab和中科院自動化所合作發表在IROS 2021的論文就提出了一個全新的機器人抓取操作方法。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

https://arxiv.org/pdf/2108.02425.pdf

作者透過結合3D物體分割、碰撞預測和物體姿態估計,讓機器人能在雜亂場景中準確地估計出物體級別、無碰撞的六自由度抓取姿態,並且達到了SOTA。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

聯合例項分割及碰撞檢測的機器人抓取姿態估計示意圖

首先採用PointNet++作為編碼器從點雲中捕捉3D特徵資訊,後接三個並行解碼器:例項分割解碼器,六自由度抓取姿態解碼器和碰撞檢測解碼器。

這三個解碼器分支分別輸出逐點的例項分割、抓取配置和碰撞預測。在推理階段,作用於同一個例項,且不會發生碰撞的抓取姿勢會被歸為一組,透過位姿非極大值抑制演算法融合形成最後的抓取姿勢。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

聯合例項分割及碰撞檢測的機器人抓取姿態估計算法框圖

例項分割分支

想抓取一個物體,得先能看清它,看得清楚,才能抓得準確。例項分割分支採用一個逐點例項語義分割模組來區分多個物件。具體來說,屬於同一例項的點應該具有相似的特徵,而不同例項的特徵應該不同。

在訓練過程中,每個點的語義和例項標籤都是已知的,用二分類交叉熵來計算該分支輸出的語義損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

,可以對背景和前景進行分類。

而例項損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

透過一個判別損失函式

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

來計算:方差損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

可以讓屬於同一個例項的點儘量向例項中心點靠近,而距離損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

是為了增加不同例項中心之間的距離,正則化損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

約束所有例項朝向原點,以保持啟用有界。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

用於例項分割的判別損失函式圖解

整體例項分割的總損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

為語義損失和例項損失之和。

這樣,例項分割分支就可以為演算法學習例項級的抓握提供例項資訊,因而模型可以自主完成抓取,更可以由你指定抓取目標,聽你差遣,指哪抓哪。

六自由度抓取姿態估計分支

六自由度抓取姿態估計分支在得到了例項的點雲後,會為點雲中的每個點生成SE(3)抓取配置引數,SE(3)抓取配置g由抓取中心點gt、旋轉矩陣gR、抓取寬度gw、抓取深度gd和抓取質量評估分數gs構成且每個點僅對應一個最優的抓取配置引數組合。

在訓練時,將場景點雲中可抓取點的預測視為一個二分類任務,使用交叉熵損失函式監督排除不可抓點,僅保留可抓點。每個可抓點的損失包含了旋轉損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

、抓持深度損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

和抓持質量得分損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

,以此進行監督訓練。

可是,從非線性和不連續的旋轉表示(如四元數或旋轉矩陣)中直接學習六自由度抓取姿態是非常困難的,為了解決這個問題,gR用兩個正交的單位向量將傳統旋轉矩陣分解為手爪的接近物體的方向

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

和手爪閉合的方向

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

為了最佳化,將旋轉損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

分為三個部分:偏移損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

、餘弦損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

和關聯損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

,分別用於約束位置、角度預測和正交性。抓持寬度損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

和抓持質量得分損失

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

用均方誤差(MSE)損失進行最佳化。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

六自由度抓取姿態估計分支無需事先假定物體的幾何資訊,能夠直接從3D點雲的特徵中進行抓取姿態的預測,並對損失函式做了更精巧的設計,對於複雜場景中各種形狀和大小的物體都能「探囊取物」。

碰撞檢測分支

雖然前兩個分支能夠實現例項級六自由度抓取姿態預測,但仍然需要一個碰撞檢測分支來推斷每個抓取的潛在碰撞以保證生成的抓取姿態在場景中是有效的和可執行的。

碰撞檢測分支採用了一個可學習的碰撞檢測網路來直接預測所生成的抓取姿態可能產生的碰撞。

在訓練過程中,將對無碰撞和有碰撞視為二分類問題並進行取樣,真實的碰撞結果標籤由已有的碰撞檢測演算法根據六自由度抓取姿態估計分支的抓取配置生成,碰撞損失函式

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

使用二分類交叉熵損失進行監督。

並行的碰撞檢測分支使得該方法的六自由度抓取姿態估計分支不依賴碰撞檢測作為後處理模組來過濾無效的抓取姿態,大幅降低「思考」延遲,機械臂的抓取動作看上去就是兩個字,絲滑

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

在公開資料集Graspnet-1Billion上的小試牛刀,一不小心就拿了個SOTA:

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

GraspNet-1Billion資料集實驗結果

刷刷榜不過癮,使用Kinova Jaco2機器人和商用RGB-D相機Realsense實戰演練,再拿SOTA,成功率和完成率較之前表現最好的GraspNet都有不小的提升:

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

真實機器人平臺實驗結果

入門先學抓,要想拜師學藝,還得練練放。

合理地抓和放,可以完成更復雜的任務,比如自主裝配,搭建等任務。

同樣是IROS 2021收錄的一篇位元組跳動和清華大學合作的論文,讓機器人可以在沒有人類指導的圖紙的情況下,也能進行結構設計與建造。

而以往機器人在裝配、佈置、堆積木時,得先告訴它任務的最終目標狀態,相當於按「圖」施工,沒「圖」可幹不了。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

https://arxiv.org/pdf/2108.02439.pdf

搭個橋嘛,這有啥難的?

如果不依賴人類設計出的藍圖,機器人要面對的是一個任意寬的懸崖,一堆雜亂擺放的積木塊。

搭個什麼樣的橋啊?自己考慮。用幾塊積木啊?越少越好。這橋不會塌吧?那誰知道呢。

一問三不知,這可比給了精確目標狀態的標準裝配任務難多了,因為機器人既要考慮積木的操作順序,還必須找出即物理上穩定的橋的架構,規劃的搜尋空間之大,讓人頭皮發麻。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

工程師們腦洞大開,提出了一個雙層框架來解決橋樑的設計和施工任務,在概念上,類似於任務與動作規劃(Task and Motion Planning,TAMP) :機器人先學習一個高層藍圖策略來一次又一次生成將一個構建塊移動到所需位置的組裝指令,再實施一個低層操縱策略來執行高層指令。

這其中的創新之處在於:高階藍圖策略是以物理感知的方式,使用深度強化學習在一個魔改的物理模擬器中學習神經藍圖策略。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

高層藍圖策略

高層藍圖策略要學習的,就是按順序生成取放指令,用最少的積木搭建一座連線兩個懸崖的平橋,還不能倒。

每次,agent都可以觀察一下當前場景,然後指示拿一個積木去搭橋。讓物理引擎飛一會兒,agent就可以接收來自環境的反饋(橋垮沒垮),繼續觀察連續的場景並給出下一個指令。

咦?這個不就是傳說中的馬爾可夫決策過程(MDP)問題嗎?不用懷疑,你又學會了。

用元組{S,A,Γ,R,T}定義這個問題,S表示狀態空間,A表示動作空間,Γ是轉移函式,R代表獎勵函式,T是一回合的視野。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

狀態空間編碼所有N個構建塊和2個懸崖的狀態:

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

是包含三維位置、尤拉角、笛卡爾速度、角速度、表示物體是否為積木的一維物體型別指示器和一維時間組成的向量。

動作空間簡單一點,只生成拾取放置指令,將構建塊放在橫跨兩個懸崖中間的yz二維平面上,編碼了一維目標物件標識、一維目標y位置、一維目標z位置和圍繞x軸的一維旋轉角度。

轉移函式的構建非常複雜,想是想不出來的,咋辦呢?

記得剛剛說過的物理模擬器嗎?模擬器在接受藍圖策略的指令後直接將選中的積木塊傳送到指令位置,繼續物理模擬,直到環境達到穩定狀態後,將結果狀態返回給藍圖agent。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

因此,即使不依賴符號規則或任何已知的動力學模型,agent仍然可以獲知某個指令在很長一段時間內會造成的的物理結果,並學會尋求物理穩定的解決方案。

沒有明教,卻有暗示,只能說是「妙啊」!

獎勵函式是「施工獎勵」、「平整度獎勵」和「節省材料獎勵」的組合,說白了就是,用料要少,橋面要平,還不能倒。

為了解決上述的馬爾可夫決策過程問題,工程師們再次祭出三把「利器」:Transformer, 階段性策略梯度演算法(Phasic Policy Gradient,PPG)和自適應課程學習。

具體來說,提取積木塊和懸崖的特徵時,基於Transformer的特徵提取器

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

將物件和相互間關係的歸納偏差整合,傳送給策略網路和價值網路,並使用PPG演算法來有效地訓練策略。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

說到階段性策略梯度演算法(Phasic Policy Gradient,PPG),不同於近端策略最佳化演算法(Proximal Policy Optimization,PPO),在訓練時,它會階段性地將價值資訊提取到策略中,以便更好地進行表徵學習,相當於使用一個模仿學習目標來穩定策略網路的訓練。

PPG有兩種架構變體,Dual和Shared。Shared架構中,策略和價值網路共享同一個特徵提取器

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

,後接策略頭

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

和價值頭

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

根據大量實踐,發現Shared表現更好。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

演算法再強,一上來就設計長橋,也太難為人了。

自適應課程學習提供了一種循序漸進的升級打怪思路,根據agent的訓練進度調整谷寬。當機器人在狹窄的谷間搭橋的成功率漸漸提升時,模擬器才會漸漸增加遠距離懸崖出現的機率。

低層運動執行策略

指揮的有了,執行就不難了。

產生裝配指令的藍圖策略訓練好後,低層運動執行策略就可以照著這些指令來操縱積木塊到目標狀態。而藍圖策略在訓練期間受到過物理規律的薰陶,所以它能夠為低階控制器產生物理上可行的指令。

因此,低階策略每次只需要完成一個簡單的取放任務,用經典的運動規劃演算法就能解決:透過生成塊的質心抓取姿態,並使用雙向RRT演算法規劃無碰撞路徑。

正是由於在本方法中,指令生成和運動執行是完全解耦的,所以學習到的藍圖策略可以以Zero-Shot的方式直接應用於任何真實的機器人平臺。

真實機器人實驗

模擬器裡學習到的藍圖策略+現成的運動規劃方法放在真實的機器人系統身上表現如何呢?

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

現實世界中橋樑設計和施工的結果

拿三種情況測一測,其中懸崖之間的距離分別設定為10釐米、22釐米和32釐米,機器人可以成功地遵循所學習的藍圖策略給出的指令,使用不同的塊數以不同的方式建造橋樑。

「老司機」領進門,修行在個「機器人」

學會了抓和放,機器人終於入了師門。

拜師學藝,學的可不是簡單本領,光能擺弄兩下胳膊顯然是不夠的,任務複雜了「腦子」轉不過彎也不行。

這個看著很簡單,照著「師傅」的操作照貓畫虎地模仿幾遍就會了。

但是機器人看了卻只能直呼:「模仿難,難於上青天」。

比如把衣架掛起來這麼一個操作,就需要讓機器人去完成4個子任務,其中每一個子任務都是相互依賴的:

  1. 接近衣架
  2. 抓取衣架
  3. 移動衣架到掛杆附近
  4. 將衣架掛在杆子上

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

師傅領進門,修行在個人,機器人需要能理解整個任務過程是需要按階段進行劃分的,而且還需要「意識到」在一個階段沒有完成的情況下,是不能進行下一個階段的。

把任務進行拆解之後,每個子任務的複雜度也得到了簡化,同時也可以透過對已有的子任務進行重新組合實現新的更復雜的任務需求。

長序列操作任務

目前,主流的方法是利用分層模仿學習(HIL),包括行為克隆(BC)和逆向強化學習(IRL)。然而不幸的是,BC在專家示例有限的情況下,很容易出現累計誤差。IRL則將強化學習和環境探索引入了模仿過程中,透過不斷探索環境試錯,最終得到對環境變化不敏感的行為策略。

雖然IRL可以避免這類錯誤,但是考慮到高層和低層策略的時間耦合問題,在option模型上實現絕非易事。

不過,問題不大,位元組跳動在收錄於ICML 2021的論文中提出了一個新的分層IRL框架「Option-GAIL」。

簡單來說,Option-GAIL可以透過分析、利用專家給定的行為示教資訊,學習其背後的行為邏輯,使機器人在相似環境和任務下能完整重現與專家一致的行為結果。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

https://arxiv.org/pdf/2106.05530.pdf

方法實現

Option-GAIL演算法基於對抗生成模仿學習(GAIL),其行為的整體相似度由對抗生成網路來近似得到,並且採用option模型代替MDP進行分層建模。

論文采用了單步(one-step)option 模型,也就是每一步都要決定下一步應該做什麼子任務,然後再根據當前所處的子任務和觀測到的狀態決定採取什麼動作。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

藍色箭頭所指是的決策過程,紅色箭頭是決策,黑色箭頭是環境的狀態轉移

現在有了能把長週期任務表示成多個子任務分階段執行的option模型,下一步就要解決如何訓練這個模型,使得學到的策略能復刻演示資料。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

雖然和 GAIL 所解決的佔用率度量(occupancy measurement)匹配問題很像,但是模型裡多出來的 option 在演示資料裡是觀測不到的。

因此,論文提出了一種類似EM演算法來訓練Option-GAIL的引數,從而實現端到端的訓練。

E(Expectation)步驟利用Viterbi演算法推斷出專家資料的option。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

M(Maximization)步驟透過最小-最大博弈來交替最佳化內層和外層運算元,從而得到給定專家option時最優的策略。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

實驗結果

在常用的機器人移動和操作環境上測試我們的演算法。測試任務包括:

  1. 控制單足、雙足機器人運動,機器人需要在邁腿、彈跳等不同行為模式之間切換才能穩健行走;
  2. 控制螞蟻機器人先推開迷宮裡的障礙物才能走到終點;
  3. 控制機械臂關微波爐門,機械臂要靠近微波爐,抓住爐門把手,最後繞門軸旋轉到關閉。

為了驗證 Option-GAIL 中引入的層次化結構以及在演示資料以外和環境的互動是否能幫助智慧體更好地學習長週期任務,選擇如下四種基線方法和Option-GAIL進行對比:

  1. BC(純動作克隆):只在演示資料上做監督學習,不和環境互動,也沒有任何層次化的結構資訊;
  2. GAIL:有在演示資料之外自己和環境互動,但沒有利用長週期任務的結構資訊;
  3. H-BC(層次化動作克隆):建模了層次化結構,但自己不和環境互動;
  4. GAIL-HRL:在佔用率測度匹配的過程中不考慮option。

結果表明,Option-GAIL相比非層次化的方法收斂速度更快,相比不和環境互動的純模仿學習演算法最終的表現更貼近演示資料。

「中國達芬奇」機器人火了!除了縫葡萄皮還有這些腦洞大開的操作

測試環境及各種演算法的效能曲線

不如,一起來鼓搗機器人!

當然,除了讓機器人學會抓取操作之外,位元組跳動還研發了2D/3D環境語義感知、人機互動等系列技術,之前也對外開源了SOLO等系列機器人感知模型和程式碼,在GitHub上頗受歡迎。

不過,技術研究到產業化落地還有很長的路要走,這就需要長期的投入和探索。希望大廠們繼續努力,讓機器人早日真正走進我們的生活。

參考資料:

https://mp.weixin.qq.com/s/FuC4XvgWYNMVYUjG9XoMGw

https://arxiv.org/pdf/2108.02425.pdf

https://arxiv.org/pdf/2108.02439.pdf

https://arxiv.org/pdf/2106.05530.pdf

分類: 科技
時間: 2021-10-12

相關文章

世界首例!達芬奇機器人輔助帶血管蒂髂骨瓣移植術成功
三湘都市報·新湖南客戶端9月19日訊(記者 李琪 通訊員李姍 李驍寧 蔣凱)治療股骨骨折開放手術方式創傷大.出血較多,是否可以採取機器人手術?答案是可行.今天,記者從中南大學湘雅三醫院瞭解到,該院骨科 ...

達·芬奇與戲劇《俄耳甫斯》:文藝復興舞臺的超級“變變變”
多米尼哥·羅倫佐 文藝復興時期,許多著名的工程師和藝術家都參與過舞臺道具設計和佈景設計.藝術家中,從蒙塔納到拉斐爾,達·芬奇也不例外.達·芬奇因<俄耳甫斯>舞臺設計而名聲大噪.他是如何與當 ...

維也納Zacke畫廊攜館藏級珍品呈現「中國藝術集珍」拍賣會

維也納Zacke畫廊攜館藏級珍品呈現「中國藝術集珍」拍賣會
精選拍品 Lot 0003 乾隆時期罕見銅胎掐絲琺瑯和鏨胎琺瑯佛教三寶供器 起拍價:4,000 歐元 本件拍品曾出現在Gunhild Gabbert Avitabile博士的<Die Ware ...

藝術與科學完美的結合——達芬奇

藝術與科學完美的結合——達芬奇
罕見的全才--達芬奇 說起達芬奇,我們一般都會認為他是文藝復興時期的藝術巨匠,留有<蒙娜麗莎><最後的晚餐>及<抱銀貂的女人>等等傳世之作.或許是因為他在藝術上造詣 ...

畫蒙娜麗莎的達·芬奇竟是科學家?“科學巨人”的秘密都在這裡了

畫蒙娜麗莎的達·芬奇竟是科學家?“科學巨人”的秘密都在這裡了
在大家的印象當中,科學巨人們都是怎樣的形象?嚴肅刻板?一絲不苟?在實驗室中一遍又一遍地重複著實驗?或者在紙上一次又一次地寫下公式? 誠然,這些是科學家們必不可少的一些特質,對待科學嚴肅認真,對待知識積 ...

劍與遠征:造夢藝術家達芬奇,虛空密碼掌握了嗎?

劍與遠征:造夢藝術家達芬奇,虛空密碼掌握了嗎?
哈嘍,大家好!歡迎大家收看,不肝不遊戲!我是瘋子~ 果然駐場傭兵上線之後,聯動虛空成了絕唱.這次的虛空又是莉莉絲原創角色,偉大的藝術家達芬奇.而達芬奇同樣也是進了高競商店,如果這個英雄夠強力的話,高競 ...

後期神器達芬奇17.2正式版來了!PR/AE都可以從電腦解除安裝啦

後期神器達芬奇17.2正式版來了!PR/AE都可以從電腦解除安裝啦
隨著抖音.快手等短影片社交軟體的大熱,大眾對於自拍的熱情已經逐漸轉移至有趣創意的短影片製作,但影片製作也不是那麼簡單的事情. 影片製作的難點在於,在瑣碎的技術和細節之中,要畫面.聲音.文字等元素結合在 ...

“玩具型”收購!紐卡新老闆曾3億買城堡+4.5億買達芬奇真跡

“玩具型”收購!紐卡新老闆曾3億買城堡+4.5億買達芬奇真跡
根據體壇週報總編輯駱明,援引的英國媒體的訊息,關於紐卡斯爾的新老闆本·薩勒曼,紐卡球迷完全不需要擔心,他會像阿森納老闆克倫克一樣,雖然資產非常豐富,但卻對一度對俱樂部捨不得花錢. 根據英國媒體報道,薩 ...

達.芬奇和韓寒的傳奇提醒你:出彩的機會有可能藏在這個細節裡

達.芬奇和韓寒的傳奇提醒你:出彩的機會有可能藏在這個細節裡
在義大利佛羅倫薩的郊區,有一個小村子,這個村子和義大利其他的其他村落一樣,沒有任何突出的景緻,但它卻非常出名的,因為這裡產生過一個偉大的畫家,達.芬奇,村子裡唯一的景點就是達.芬奇紀念館 而達.芬奇紀 ...

世界首例!湘雅三醫院成功開展達芬奇機器人輔助帶血管蒂髂骨瓣移植術

世界首例!湘雅三醫院成功開展達芬奇機器人輔助帶血管蒂髂骨瓣移植術
科羅令教授團隊與手術室團隊合作進行手術. 手術第二天,羅令查房. 紅網時刻9月18日訊(記者 周曼 通訊員 李姍 李驍寧 蔣凱)9月17日,中南大學湘雅三醫院骨科羅令教授團隊與手術室團隊合作,運用機器 ...

今日消費資訊:《芬奇》全新預告發布、「上下」品牌更新為“SHANG XIA”

今日消費資訊:《芬奇》全新預告發布、「上下」品牌更新為“SHANG XIA”
<芬奇>全新預告發布 9 月 20 日,<芬奇>(Finch)的全新預告發布.影片由米格爾·薩普什尼克(<權力的遊戲>.<豪斯醫生>)執導,湯姆·漢克斯 ...

36氪獨家 | 「Airwallex空中雲匯」獲2億美元E輪融資,估值達40億美元
作者 | 詠儀 編輯 | 蘇建勳 36氪獲悉,「Airwallex空中雲匯」今日宣佈完成超額認購的2億美元E輪融資,由Lone Pine Capital領投,新投資方G Squared.Vetamer ...

再試尤拉好貓:「油電之爭」的本質,其實更像手機與相機的競爭?

再試尤拉好貓:「油電之爭」的本質,其實更像手機與相機的競爭?
作為電動邦編輯部如今駕齡最短的小編,當領導讓我再試一次新到的尤拉好貓試駕車的時候,我的內心其實是拒絕的: 一方面,這款車的詳細評測圖文.影片乃至EVRI續航測試,早已經有其他同事出產過高質量的內容,想 ...

創業者為什麼選擇「螞上創業營」?
當創業者決定創業,考驗他的不再僅僅是對事業的追逐,更是資本和多維度的歷練.CEO的認知速度,決定企業能跑多快多遠. 「螞上創業營」是由螞蟻集團重磅推出的面向早期企業CEO的創業營,致力於打造國內新銳商 ...

想在石景山買別墅,「遠洋源山春秋」為什麼能均價 9.3 萬 /㎡

想在石景山買別墅,「遠洋源山春秋」為什麼能均價 9.3 萬 /㎡
基本情況:目前和愛人工作.居住都在海淀. 資金情況:雙方都是企業高管,他收入比我高一點,家庭年收入1000萬左右. 問:雖然目前的居住環境不錯(海淀某平層),但因為疫情的關係,我還是想要一個更舒適的空 ...

萌寵系列頭像「貓咪情頭」

萌寵系列頭像「貓咪情頭」
喜歡的點贊+關注.點選頭像進入主頁更多精彩~~ 我對你是正兒八經的偏心. 我家小孩要是晚上生氣了,我會連夜哄好,不會讓壞脾氣跟隨她到明天. 我覺得你和空氣好像呀,在這世界上空氣無處不在,而你在我心裡也 ...

身高管理要趁早,「四大長高秘訣」大曝光

身高管理要趁早,「四大長高秘訣」大曝光
想要長高,並非一蹴而就 高強度的運動和大量營養攝入 對身高的增長有著負面的影響 那麼,長高有沒有什麼秘訣呢? 有的家長問: "籃球.跳繩.游泳不是可以幫助增高嗎?" 籃 球 有彈跳 ...

「我不是病毒」陳舒商畫展在洛杉磯舉行

「我不是病毒」陳舒商畫展在洛杉磯舉行
「我不是病毒」陳舒商畫展在洛杉磯舉行 葛育華 洛杉磯綜合報道 9月18日週六,由美國南加州華人社團聯合會主辦的陳舒商個人畫展在洛杉磯東區的一個先鋒畫廊隆重舉行. 洛杉磯部分僑領到場參加剪彩儀式. 葛育 ...

芬奇壽司餐廳:霓虹燈的都市美學

芬奇壽司餐廳:霓虹燈的都市美學
近日,Studio Didea事務所將一個自助洗衣店改造成了壽司餐吧.芬奇壽司位於巴勒莫馬西莫劇院附近的一座歷史建築內,這裡以都市風與簡約風相結合的獨特氛圍而著稱. ▼餐廳入口 Serena Elle ...